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Abstract 
Transformer-based Natural Language Processing (NLP) models have revolutionized the extraction of insights from 

unstructured clinical text, offering significant advancements in precision medicine. This review explores the application of 

these models in mining oncology clinical notes to enhance drug matching and personalized treatment strategies. Oncology 

clinical documentation, often characterized by high variability and complexity, poses challenges to traditional data 

processing methods. However, transformer architectures such as BERT, GPT, and their domain-specific variants have 

demonstrated exceptional capabilities in understanding context, semantics, and clinical terminologies. We review recent 

literature highlighting the use of these models in identifying relevant patient characteristics, treatment histories, and 

biomarkers that influence therapeutic decisions. Special attention is given to the integration of these models into electronic 

health record (EHR) systems and their role in improving drug recommendation systems. Additionally, we address current 

limitations, including model interpretability, data privacy, and generalizability across diverse patient populations. The 

review concludes by outlining future directions for research, emphasizing the potential of transformer-based NLP in driving 

more accurate and efficient drug matching in oncology care through better utilization of clinical narratives. 

 
Keywords: Transformer Models, Natural Language Processing, Oncology, Clinical Notes and Drug Matching. 

 

I. INTRODUCTION 

 

 Background and Motivation 
In recent years, the rapid advancement in Natural 

Language Processing (NLP), particularly through 

transformer-based models, has opened new possibilities 

for leveraging unstructured clinical text in the healthcare 

domain. Oncology, as a field driven by complex 

treatment protocols and individualized care pathways, 

generates an enormous volume of clinical notes that 

contain valuable insights often underutilized due to their 

unstructured nature. These notes include detailed 

narratives about patient histories, tumor characteristics, 

drug responses, and clinician assessments. Traditional 

methods of data extraction have proven insufficient for 

capturing the nuanced language of oncology 

documentation. However, transformer-based NLP models 

such as BERT (Bidirectional Encoder Representations 

from Transformers) and GPT (Generative Pre-trained 

Transformer) have shown strong capabilities in 
contextual understanding and semantic representation, 

making them well-suited for mining complex clinical 

narratives to inform drug matching and personalized 

cancer treatment (Vaswani et al., 2017; Devlin et al., 

2019). 

 

The motivation behind this review is rooted in the 

growing need for precision medicine in oncology, where 

effective treatment relies on accurately matching drugs to 

patient-specific profiles. While structured data such as 

lab results and imaging findings are critical, the 

unstructured narratives in clinical notes often contain key 

information about patient responses, adverse effects, and 

physician judgments that are essential for optimal 

therapeutic decision-making. Applying transformer-based 

NLP to these texts can enhance clinical decision support 

systems by enabling the automated extraction of 

actionable insights, thereby improving drug matching 

processes and ultimately, patient outcomes (Lee et al., 

2020; Alsentzer et al., 2019). This review seeks to 

synthesize current advancements in this space, highlight 
best practices, and identify areas for future research. 

https://www.ijsrmt.com/
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 Problem Statement 
Despite the critical role that unstructured clinical 

notes play in capturing nuanced patient information, their 

potential remains largely untapped due to the complexity 

and variability of natural language in medical 

documentation. In oncology, where treatment decisions 

must be tailored to individual patient profiles, the 

inability to efficiently extract relevant information from 

these notes hampers the effectiveness of drug matching 

and personalized care. Traditional data processing 

methods lack the contextual understanding needed to 

interpret medical narratives accurately, leading to missed 

opportunities in clinical decision-making. There is a 

pressing need for advanced NLP models that can 

navigate the intricacies of oncology texts and transform 

unstructured data into actionable insights to support more 

precise and efficient treatment recommendations. 

 

 Objectives of the Study 
The primary objective of this paper is to provide a 

comprehensive review of transformer-based Natural 

Language Processing (NLP) models and their 

applications in mining unstructured oncology clinical 

notes for improved drug matching. It aims to explore how 

these advanced models can extract meaningful insights 

from complex clinical narratives to support precision 

oncology. The paper will examine key transformer 

architectures, discuss the unique challenges presented by 

oncology clinical texts, and highlight state-of-the-art 

techniques used for processing and interpreting these data. 

Additionally, it will evaluate current applications in 

clinical decision support, outline performance metrics 

used in model validation, and identify existing limitations 

and future research directions in this emerging field. 

 

 Scope and Significance 
This paper focuses on the application of 

transformer-based natural language processing (NLP) 

models in mining unstructured oncology clinical notes to 

improve drug matching and treatment optimization. It 

explores the key challenges posed by the unstructured 

nature of clinical data, domain-specific terminology, and 

data privacy concerns, as well as the advanced techniques 

for processing and extracting valuable insights from this 

data. The significance of this research lies in its potential 

to enhance clinical decision-making by enabling the 

identification of personalized treatment options, 

optimizing drug repurposing efforts, and facilitating the 

discovery of novel biomarkers. By addressing the 

technical, ethical, and practical challenges associated 

with deploying these models in oncology, the paper 

contributes to the growing body of knowledge on the 

transformative impact of AI in healthcare, particularly in 

oncology, where timely and accurate decision-making is 

critical for patient outcomes. 

 

 Structure of the Paper 

This paper begins by providing an overview of the 
motivation and objectives behind using transformer-

based models for mining oncology clinical notes. It then 

discusses the evolution of these models, highlighting 

their capabilities and applications in medical text mining. 

The paper also explores the challenges and complexities 

involved in working with oncology clinical data, focusing 

on issues like unstructured formats, specialized 

terminology, and data privacy. Further, it examines the 

techniques used to preprocess and fine-tune models for 

medical data, as well as the methods employed for named 

entity recognition and relation extraction. The 

applications of these models in drug matching and 

clinical decision support are explored in detail, followed 

by a review of the evaluation metrics commonly used to 

assess their performance. Finally, the paper concludes 

with a summary of key findings, identifies open 

challenges, and presents opportunities for future research 

and innovation in this field. 

 

II. LITERATURE REVIEW 
 

The application of Natural Language Processing 

(NLP) in healthcare has gained significant momentum in 

the past decade, with transformer-based models emerging 

as a major breakthrough in mining unstructured clinical 

data. Earlier NLP approaches, such as rule-based systems 

and traditional machine learning models, struggled with 

the complexities of medical language, including 

abbreviations, domain-specific terminologies, and 

context-dependent meanings. The introduction of 

transformers, particularly BERT and its biomedical 

adaptations like BioBERT and ClinicalBERT, has 

enabled more accurate interpretation of clinical narratives. 

These models leverage self-attention mechanisms to 

understand contextual relationships within text, making 

them suitable for tasks such as named entity recognition, 

relation extraction, and document classification in clinical 

settings (Devlin et al., 2019; Lee et al., 2020; Alsentzer et 

al., 2019). 

 

In oncology, recent studies have demonstrated the 

effectiveness of transformer-based models in extracting 

drug-related information, adverse event mentions, and 

treatment outcomes from clinical notes. For instance, 

ClinicalBERT has been employed to identify key 

biomarkers and treatment regimens from pathology 

reports, enhancing the ability to tailor therapies to 

individual patients (Huang et al., 2020). Moreover, NLP 

pipelines integrated with transformer models have shown 

promise in supporting clinical decision-making by 

mapping textual patient information to structured drug-

matching algorithms (Si et al., 2021). Despite these 

advancements, challenges persist in generalizing model 

performance across diverse healthcare settings, handling 

imbalanced datasets, and ensuring the explainability of 

model outputs in clinical environments. 

 
 Evolution of Transformer Architectures 

The evolution of transformer architectures began 

with the seminal work as represented in figure 1 

(Vaswani et al., 2017), who introduced the original 

Transformer model, revolutionizing NLP by replacing 
recurrent structures with self-attention mechanisms. This 

innovation allowed models to process sequences in 

parallel and capture long-range dependencies more 

effectively. Following this, BERT (Bidirectional Encoder 
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Representations from Transformers) was developed by 

(Enyejo et al., 2014), introducing bidirectional context 

understanding by training on masked language modeling 

and next sentence prediction tasks. BERT’s architecture 

significantly improved performance on multiple NLP 

benchmarks and laid the foundation for domain-specific 

adaptations. For example, BioBERT (Michael et al., 2024) 

and ClinicalBERT (Alsentzer et al., 2019) were fine-

tuned on biomedical and clinical texts, respectively, 

enhancing model performance in medical applications. 

Meanwhile, GPT models adopted a unidirectional 

autoregressive approach, excelling in generative tasks 

and dialogue systems (Radford et al., 2019). These 

successive developments reflect a growing capacity for 

transformers to model complex language patterns, 

particularly within specialized domains like healthcare. 

 

 
Fig 1 Picture of Evolution of Transformer Architectures (Vaswani et al., 2017). 

 

Figure 1: Portrays realistic AI research lab where a 

group of researchers is actively engaged in studying key 

developments in transformer models. A large digital 

display in the room presents the heading and a timeline 

highlighting major models such as the original 

Transformer, BERT, GPT, BioBERT, and ClinicalBERT. 

The scene includes clear diagrams and annotations that 

show how each model builds on previous innovations, 

enhancing language understanding and generation. The 

workspace is filled with laptops, whiteboards, and 

collaborative tools, giving the impression of a real-world 

setting where advanced AI research is taking place.   

 

 Key Models: BERT, GPT, T5, and Variants 
Key transformer-based NLP models have set new 

benchmarks in various natural language understanding 

and generation tasks. BERT (Bidirectional Encoder 

Representations from Transformers) introduced deep 

bidirectional training and proved highly effective for 

sentence-level classification and token-level tagging tasks 

as presented in table 1 (Devlin et al., 2019). Its success 

led to the development of domain-specific variants like 

BioBERT and ClinicalBERT for biomedical and clinical 

contexts (Lee et al., 2020; Alsentzer et al., 2019). GPT 

models, developed by OpenAI, focus on generative 

language tasks using unidirectional training, with GPT-3 

and GPT-4 demonstrating few-shot and zero-shot 

learning capabilities at a large scale (Brown et al., 2020). 

Meanwhile, T5 (Text-To-Text Transfer Transformer) 

unified all NLP tasks into a text-to-text format, showing 

strong performance across diverse benchmarks (Raffel et 

al., 2020). Variants like MedT5 have emerged, tailored 

for medical applications through pretraining on large-

scale clinical corpora (Ijiga et al., 2024). These models 

collectively form the backbone of modern clinical NLP 

systems, enabling scalable and accurate information 

extraction from unstructured clinical text. 

 
Table 1 Summary of Key Models: BERT, GPT, T5, and Variants 

Model Description Key Features Applications in Oncology 

BERT BERT (Bidirectional Encoder 

Representations from Transformers) is 

designed to pre-train deep bidirectional 

representations by jointly conditioning on 

both left and right context in all layers. 

Pretrained on large 

corpora, excels in tasks 

requiring understanding of 

context. 

Applied in medical NLP tasks 

such as disease classification, 

named entity recognition 

(NER), and medical event 

prediction. 

GPT GPT (Generative Pre-trained Transformer) 

is a unidirectional transformer model that 

Focuses on autoregressive 

generation, excels in text 

Used for generating clinical 

notes, summarizing medical 
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focuses on generating text based on the 

context provided. 

generation and completion 

tasks. 

texts, and creating patient 

reports in oncology. 

T5 T5 (Text-to-Text Transfer Transformer) 

converts all NLP tasks into a text-to-text 

format, where both the input and output are 

treated as text strings. 

Unified approach to NLP 

tasks, flexible in handling 

various task types. 

Used in clinical note 

summarization, information 

extraction, and drug matching 

in oncology. 

Variants Transformer model variants, including 

BioBERT, ClinicalBERT, and RoBERTa, 

adapt pre-trained models to specific 

domains like biomedicine and healthcare. 

Domain-specific 

pretraining, enhanced for 

medical terminologies and 

context. 

Applied in oncology for tasks 

like biomarker identification, 

clinical trial matching, and drug 

repurposing. 

 

 Strengths of Transformers in Medical Text Mining 
Transformer-based models offer several strengths 

that make them particularly well-suited for mining 

medical texts, including oncology clinical notes. One key 

advantage is their ability to capture contextual 

relationships within text through self-attention 

mechanisms, enabling models to understand the meaning 

of a word based on its surrounding words critical for 

interpreting domain-specific terminology and clinical 

abbreviations (Idoko et al., 2024). Unlike traditional 

machine learning methods, transformers do not rely on 

manually engineered features, allowing them to 

generalize better across diverse datasets. Clinical 

adaptations of transformer models such as ClinicalBERT 

and BioBERT have demonstrated improved performance 

in named entity recognition, relation extraction, and 

clinical document classification, outperforming older 

architectures like LSTM or CRF-based models in 

extracting actionable insights from unstructured clinical 

data (Alsentzer et al., 2019; Lee et al., 2020). 

 

Moreover, transformers support pretraining on large 

corpora followed by fine-tuning on task-specific datasets, 

which is particularly valuable in the medical domain 

where labeled data can be scarce and expensive to obtain. 

This transfer learning capability has allowed models like 

MedT5 and GatorTron to perform well on a variety of 

clinical NLP tasks, even with limited supervision (Rasmy 

et al., 2023; Yang et al., 2022). Their scalability and 

adaptability make transformers ideal for developing 

robust clinical decision support systems capable of 

parsing oncology notes to identify relevant treatments, 

side effects, and patient responses. In addition, 

transformer models are architecture-flexible and have 

been integrated into end-to-end pipelines for real-time 

data processing and drug matching, highlighting their 

operational value in clinical settings. 

 

III. CHARACTERISTICS AND CHALLENGES 

OF ONCOLOGY CLINICAL NOTES 

 
Oncology clinical notes are rich in patient-specific 

data, including cancer staging, treatment plans, 

medication regimens, biomarker information, and 

physician observations. These notes are often 

unstructured and vary significantly in style, format, and 

vocabulary across institutions and practitioners, making 
standardized data extraction challenging (Savova et al., 

2010). The use of domain-specific abbreviations, medical 

jargon, and narrative descriptions complicates automated 

interpretation, especially when temporal expressions and 

negations affect clinical meaning. Furthermore, oncology 

notes frequently contain overlapping or conflicting 

information that must be resolved through contextual 

understanding—an area where traditional NLP models 

struggle. 

 

Another major challenge is the presence of protected 

health information (PHI) and the need to maintain data 

privacy while developing and deploying NLP models. 

De-identification, syntactic variation, and semantic 

ambiguity present further obstacles in reliably extracting 

actionable data (Meystre et al., 2008). Moreover, these 

notes often lack structured labels, limiting the availability 

of annotated datasets for supervised learning approaches, 

which are essential for fine-tuning high-performance 

transformer models in oncology applications. 

 

 Nature of Unstructured Clinical Data 
Unstructured clinical data, which includes physician 

notes, discharge summaries, pathology reports, and 

imaging narratives, constitutes the majority of 

information stored in electronic health records (EHRs) 

(Murff et al., 2011). Unlike structured data such as ICD 

codes or lab values unstructured data is free-text, often 

written in natural language and tailored by individual 

practitioners. This flexibility enhances expressiveness but 

introduces variability in terminology, grammar, and 

syntax. In oncology, this data may include detailed 

descriptions of tumor progression, treatment responses, 

side effects, and patient-reported symptoms, often 

interwoven with abbreviations, shorthand, and complex 

medical terms as represented in figure 2 (Wang et al., 

2018). 

 

Extracting meaningful insights from such data 

requires advanced natural language understanding models 

capable of recognizing clinical entities, contextual 

meanings, and relationships. The challenges are 

amplified by the frequent inclusion of temporal 

expressions, negations, and co-reference ambiguity, 

which complicate entity resolution and information 

extraction tasks. Traditional rule-based or statistical 

approaches often fail to generalize across datasets, 

highlighting the importance of transformer-based models 

trained on domain-specific corpora to bridge this 
interpretability gap effectively. 
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Fig 2 Picture of Nature of Unstructured Clinical Data (Wang et al., 2018). 

 
Figure 2: Shows a visual summary of the 

characteristics, sources, and relevance of unstructured 

data in healthcare. At the top left, it lists essential 

qualities that define high-quality unstructured data such 

as accuracy, completeness, validity, uniqueness, 

timeliness, and integrity. The other panels depict realistic 

medical settings where healthcare professionals and 

researchers use advanced technologies like AI, imaging 

tools, and augmented reality to analyze unstructured data. 

The bottom right section categorizes various sources of 

unstructured data, including medical imaging, genomic 

sequencing, wearables, EHRs, and pharmaceuticals 

research. Altogether, the image highlights how vital and 

complex unstructured clinical data is in modern 

healthcare analytics and decision-making.  

 
 Domain-Specific Terminology and Contextual 

Complexity 
Oncology clinical notes are dense with domain-

specific terminology that often lacks consistency across 

institutions and practitioners. Terms such as "HER2-
positive," "triple-negative," or abbreviations like "ER," 

"PR," and "TAC" may appear frequently but require 

specialized knowledge to interpret correctly as presented 

in table 2 (Demner-Fushman et al., 2009). Additionally, 

cancer-related language evolves rapidly with new 

therapies and biomarkers, making static vocabularies or 

lexicons inadequate for long-term applications. 

Transformer-based NLP models trained on general 

language corpora may struggle with this specialized 

vocabulary unless further fine-tuned on biomedical or 

oncology-specific text, such as with BioBERT or 

OncoBERT (Lee et al., 2020; Zhang et al., 2023). 

 

Contextual complexity adds another layer of 

difficulty. Clinical notes often contain multiple, 

overlapping time frames, such as historical treatments, 

current symptoms, and future plans, all described within 

the same document. Temporal expressions like “post-

surgery,” “ongoing chemotherapy,” or “previous 

recurrence” must be correctly linked to clinical events to 

ensure accurate understanding (Chapman et al., 2011). 

Furthermore, the same term can convey different 

meanings depending on context e.g., “progression” may 

refer to disease worsening or treatment response 

depending on sentence structure. Accurately capturing 
these nuances requires models that can understand both 

syntactic structure and clinical semantics, highlighting 

the need for domain-adapted transformer architectures. 
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Table 2 Summary of Domain-Specific Terminology and Contextual Complexity 

Feature Description Challenge Effect on NLP 

Specialized 

Vocabulary 

Includes cancer types, gene mutations, 

drug names. 

Requires domain-specific 

knowledge to interpret. 

General NLP models struggle 

without medical fine-tuning. 

Contextual 

Ambiguity 

Terms may have different meanings in 

different contexts. 

Hard to disambiguate 

meaning without clinical 

context. 

Leads to incorrect entity 

recognition or relation 

mapping. 

Nested 

Entities 

Multiple terms embedded in one phrase 

(e.g., "HER2-positive breast cancer"). 

Complex sentence structures 

hinder extraction. 

Requires advanced parsing to 

extract relevant information. 

Temporal 

References 

Notes include time-sensitive events (e.g., 

"previous treatment", "planned therapy"). 

Understanding time 

relationships is difficult. 

Affects event sequencing and 

treatment timelines. 

 

 Issues of Data Privacy and Annotation 

Data privacy is a fundamental concern when 

working with oncology clinical notes, as these documents 

contain sensitive patient information protected under 

regulations such as the Health Insurance Portability and 

Accountability Act (HIPAA) in the U.S. Before any data 

can be used for NLP model training or validation, it must 

be rigorously de-identified to remove protected health 

information (PHI) such as names, dates, and medical 

record numbers. However, manual de-identification is 

labor-intensive and error-prone, while automated tools 

can miss subtle identifiers, posing risks of re-

identification (Ijiga et al., 2014). Furthermore, even 

anonymized data may carry indirect identifiers or 

contextually sensitive phrases that compromise patient 

confidentiality when used in large-scale machine learning 

applications (El Emam et al., 2011). As transformer 

models require vast amounts of data, balancing 

performance needs with ethical and legal constraints is a 

major challenge. 

 

Annotation also presents significant difficulties in 

this domain. Creating high-quality, labeled datasets for 

training clinical NLP models requires expert annotators 

typically oncologists or trained clinical professionals who 

understand the complex language and medical context. 

This process is costly and time-consuming, often 

resulting in small or incomplete datasets. Moreover, 

inter-annotator agreement can be low, particularly when 

identifying nuanced concepts like disease progression or 

treatment response (Pustejovsky & Stubbs, 2012). These 

limitations affect the performance of supervised learning 

models and underscore the need for semi-supervised, 

unsupervised, or transfer learning approaches that reduce 

dependency on annotated data while still capturing the 

richness of oncology-specific language. 

 

IV. TECHNIQUES FOR MINING CLINICAL 

NOTES USING TRANSFORMERS 

 
Transformer-based techniques have significantly 

advanced the mining of clinical notes by enabling deeper 

contextual understanding and more accurate extraction of 

biomedical entities, relationships, and classifications. 

Pretrained models such as BERT and its biomedical 
variants like BioBERT, ClinicalBERT, and BlueBERT 

are commonly fine-tuned for tasks such as named entity 

recognition (NER), relation extraction, and document 

classification (Alsentzer et al., 2019; Peng et al., 2019). 

These models use self-attention mechanisms to capture 

dependencies across long textual spans, a key advantage 

when dealing with the rich, often complex narrative 

structure of oncology notes. For instance, ClinicalBERT 

has demonstrated superior performance in identifying 

patient conditions and treatment history in EHRs 

compared to traditional rule-based methods or LSTM 

architectures (Enyejo et al., 2024). 

 

In addition to fine-tuning for specific NLP tasks, 

transformers can also be integrated into end-to-end 

information extraction pipelines that combine syntactic 

parsing, temporal tagging, and clinical concept 

normalization. Techniques like question-answering (QA) 

and text summarization using models such as T5 and 

BioGPT allow for automated extraction of key clinical 

insights directly from unstructured text (Liu et al., 2021; 

Luo et al., 2022). Furthermore, transformers have been 

employed in few-shot and zero-shot learning settings, 

enabling adaptation to new tasks or rare oncology 

subdomains with minimal annotated data. The continuous 

evolution of these models alongside the development of 

domain-adapted corpora and benchmarks has expanded 

their applicability and improved their accuracy in real-

world clinical environments. 

 

 Preprocessing and Embedding Clinical Text 
Preprocessing is a critical first step in mining 

clinical notes, as raw data often contains irregularities 

such as spelling errors, non-standard abbreviations, and 

irrelevant symbols. Effective preprocessing typically 

involves text normalization, abbreviation expansion, 

sentence segmentation, and de-identification to ensure 

privacy compliance and data consistency (Velupillai et al., 

2018). In the context of oncology, domain-specific 

preprocessing is especially important to retain medically 

relevant terms and context. Tokenization strategies must 

also account for compound words and clinical phrases 

that carry significant meaning when treated as a whole, 

such as "triple-negative breast cancer." 

 

Following preprocessing, clinical text is transformed 

into embeddings that serve as input to transformer 

models. Word embeddings like Word2Vec and GloVe 

have largely been replaced by contextual embeddings 
from models such as BioBERT and ClinicalBERT, which 

capture nuanced meanings based on context (Alsentzer et 

al., 2019). These contextual embeddings significantly 

enhance model performance in downstream tasks like 
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entity recognition and classification by providing a richer, 

dynamic representation of clinical language tailored to 

biomedical and healthcare contexts. 

 
 Fine-Tuning Pretrained Models on Medical Data 

Fine-tuning pretrained transformer models on 

medical data is essential for adapting general language 

representations to the highly specialized and context-

sensitive nature of clinical text. General-purpose models 

like BERT are initially trained on large, open-domain 

corpora such as Wikipedia and BooksCorpus, which lack 

the technical vocabulary and semantic structure found in 

healthcare narratives. To address this limitation, domain-

specific variants such as BioBERT, ClinicalBERT, and 

BlueBERT have been developed by further pretraining on 

biomedical literature (e.g., PubMed, MIMIC-III) and 

electronic health records (Lee et al., 2020; Alsentzer et al., 

2019). This intermediate step improves the model’s 

ability to understand clinical terminology, identify 

medical entities, and capture complex contextual 

relationships within unstructured text. 

 

Once these models are pretrained on relevant 

corpora, they are fine-tuned for specific downstream 

tasks like named entity recognition (NER), relation 

extraction, or document classification using labeled 

datasets. For example, ClinicalBERT has shown superior 

performance in classifying patient phenotypes and 

predicting readmission risks when fine-tuned on 

annotated EHR data as represented in figure 3 (Huang et 

al., 2019). Fine-tuning involves adjusting the model 

weights using task-specific examples while retaining the 

core language understanding capabilities learned during 

pretraining. The quality and quantity of annotated 

medical data significantly influence fine-tuning 

effectiveness, making it critical to leverage high-quality 

datasets and use techniques such as transfer learning or 

data augmentation to mitigate issues of data scarcity in 

clinical NLP. 

 

 
Fig 3 Picture of Fine-Tuning Pretrained Models on Medical Data (Huang et al., 2019). 

 

Figure 3: Illustrates the concept and practical 

application of adapting large language models to specific 

healthcare tasks. In the top-left section, a diagram shows 

the typical workflow starting with big data, using base 

large language models (LLMs), and fine-tuning them on 

domain-specific datasets for specialized tasks. The top-

right visual, featuring a robot, symbolizes automation in 

fine-tuning processes. The bottom sections portray real-

world clinical environments, where medical professionals 

and data scientists collaboratively analyze patient data 

and tailor AI models to enhance medical decision-

making. Overall, the image highlights the integration of 
AI fine-tuning techniques in healthcare to improve 

diagnostic accuracy and patient outcomes. 

 

 Named Entity Recognition (NER) and Relation 
Extraction  

Named Entity Recognition (NER) is a foundational 

task in clinical text mining, especially for oncology 

clinical notes, where extracting specific entities such as 

diseases, treatments, biomarkers, and patient conditions is 

crucial. Transformer-based models, such as BioBERT 

and ClinicalBERT, have revolutionized NER by using 

context-dependent embeddings to identify entities in 

medical texts more accurately than previous models as 

presented in table 3  (Lee et al., 2020). These models can 

distinguish between various types of entities like "breast 
cancer," "HER2-positive," or "chemotherapy," even when 

they appear in ambiguous contexts. By leveraging deep 

contextual understanding, transformer-based NER 

models can handle challenges such as negations, co-
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references, and variations in medical terminology, which 

often occur in clinical documentation (Peng et al., 2019). 

Fine-tuned NER models also excel in multi-label 

classification, making them particularly useful for 

complex oncology notes, where one document may 

contain references to multiple types of entities 

simultaneously. 

 

Relation extraction (RE) further enhances the value 

of NER by identifying how entities in clinical texts are 

related. For instance, identifying that "chemotherapy" is 

related to a "patient's treatment history" or that "HER2-

positive" is a subtype of "breast cancer" helps build a 

more structured understanding of the text. Transformers 

can be trained to extract such relationships by employing 

techniques like sequence labeling or attention 

mechanisms to recognize the connections between 

medical concepts (Doshi-Velez & Kim, 2017). Models 

like BioGPT have also been employed in tasks like 

question-answering, where they can extract not only 

entities but also the relationships between these entities to 

answer specific clinical questions (Luo et al., 2022). By 

incorporating these two tasks NER and RE transformer-

based models provide a comprehensive approach to 

understanding oncology clinical notes, facilitating tasks 

like patient diagnosis prediction, treatment planning, and 

outcome forecasting. 

 

Table 3 Summary of Named Entity Recognition (NER) and Relation Extraction 

Task Description Key Challenge Oncology Use 

NER Identifies entities like drugs, diseases, 

and symptoms in clinical text. 

Inconsistent medical terms and 

abbreviations. 

Extracts cancer types, treatments, 

and outcomes from notes. 

Relation 

Extraction 

Detects relationships between entities 

(e.g., drug–disease links). 

Understanding context and 

complex sentence structures. 

Links treatments to outcomes or 

symptoms for better decisions. 

Multimodal 

Extraction 

Combines text with other data like 

genomics or imaging. 

Integrating diverse data sources 

effectively. 

Enables deeper patient profiling 

and personalized care. 

Model 

Evaluation 

Uses metrics like F1-score, precision, 

and recall. 

Diverse annotation standards 

and dataset limitations. 

Ensures accurate information 

extraction for clinical reliability. 

 

V. APPLICATIONS IN DRUG MATCHING AND 

ONCOLOGY 
 

Transformer-based models have significant potential 

in improving drug matching in oncology by automating 

the identification of suitable therapeutic options based on 

patient profiles. Oncology involves complex treatment 

decision-making, where patient-specific factors, such as 

genetic biomarkers, medical history, and cancer subtype, 

influence drug efficacy. Transformers can process and 

synthesize unstructured clinical notes to extract relevant 

clinical features, including diagnosis, genetic mutations, 

treatment responses, and adverse effects (Luo et al., 

2022). By leveraging models like BioBERT or 

ClinicalBERT, clinical practitioners can quickly access 

comprehensive information about previous patient 

outcomes and align those with existing treatment 

guidelines, facilitating more personalized and timely drug 

recommendations. Moreover, these models can be fine-

tuned to suggest potential clinical trials based on a 

patient's medical background, thereby expanding access 

to experimental therapies. 

 

In addition to drug matching, transformer models 

are increasingly employed in oncology for decision 

support systems that assist clinicians in predicting 

treatment responses and outcomes. By extracting 

meaningful relationships between cancer biomarkers, 

therapeutic interventions, and clinical outcomes, 

transformers provide actionable insights that guide the 

treatment course (Lee et al., 2020). These models are 

particularly valuable in precision medicine, where 
understanding the interactions between genetic mutations 

(e.g., BRCA1 in breast cancer) and drug treatments (e.g., 

PARP inhibitors) is critical for selecting the most 

effective therapy (Liu et al., 2021). Additionally, 

transformers have been used to mine large-scale 

biomedical literature, cross-referencing emerging drug 

research with patient data to identify novel drug 

interactions or off-label uses. This integration of clinical 

and research data enhances the overall drug discovery 

and matching process in oncology, enabling more 

effective and individualized patient care. 

 

 Identifying Patient-Specific Treatment Signals 

Transformer-based models play a critical role in 

identifying patient-specific treatment signals by 

analyzing unstructured clinical notes to extract relevant 

medical data that influence treatment decisions. 

Oncology treatment decisions require consideration of 

various factors such as genetic mutations, cancer 

subtypes, and prior treatments. By leveraging models like 

BioBERT and ClinicalBERT, these systems can identify 

key signals from clinical notes, such as tumor markers, 

genetic mutations (e.g., HER2-positive status in breast 

cancer), and treatment responses, which are pivotal in 

personalizing cancer therapies (Lee et al., 2020). For 

instance, transformers can be fine-tuned to detect specific 

genetic alterations and correlate them with potential 

treatment regimens, aiding clinicians in selecting targeted 

therapies that align with individual patient profiles. 

 

Additionally, transformers can identify subtle 

treatment signals hidden in the text, such as early signs of 

drug resistance or adverse reactions, by analyzing 

longitudinal patient data. This ability to track changes in 

patient status over time allows for adaptive treatment 

strategies, improving outcomes and minimizing adverse 
effects as represented in figure 4 (Luo et al., 2022). By 

automating the extraction of these complex treatment 

signals, transformers enhance the precision and speed of 

clinical decision-making. 
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Fig 4 Picture of Identifying Patient-Specific Treatment Signals (Luo et al., 2022). 

 
Figure 4: Emphasizes the critical role of accurate 

patient identification in healthcare delivery and safety. It 

visually depicts various scenarios in which patient 

identity is verified through verbal confirmation, 

wristband scanning, and digital record matching before 

diagnostic or treatment procedures. This process ensures 

that the right patient receives the right care at the right 

time, reducing the risk of medical errors. The inclusion of 

aged care standards further highlights the importance of 

maintaining rigorous identification protocols, particularly 

in vulnerable populations. Overall, the image underscores 

the necessity of integrating reliable identification systems 

within clinical workflows to support patient safety and 

data integrity.  

 

 Integrating NLP with EHR and Decision Support 
Systems 

The integration of Natural Language Processing 

(NLP) models with Electronic Health Records (EHR) has 

transformed clinical decision-making by enabling real-

time extraction and analysis of critical patient data from 

unstructured text. NLP models, such as BioBERT and 

ClinicalBERT, allow for the extraction of key clinical 

features such as disease diagnosis, biomarkers, treatment 

history, and comorbidities from EHRs, which are often 

stored in unstructured formats (Alsentzer et al., 2019). By 

converting clinical text into structured data, NLP aids in 

improving the accessibility and usability of patient 

records for clinicians, helping them make data-driven 

decisions. This integration is particularly important in 
oncology, where patient treatment plans are complex and 

require up-to-date information about genetic mutations, 

cancer progression, and therapy response. 

 

Furthermore, combining NLP with decision support 

systems (DSS) enhances the capabilities of these systems 

by allowing them to suggest personalized treatment 

options based on the patient’s clinical history. By 

extracting actionable insights from EHRs, NLP-powered 

DSS can recommend the most effective drug therapies, 

clinical trials, and follow-up interventions tailored to the 

individual patient’s needs (Luo et al., 2022). For example, 

NLP models integrated with DSS can help oncologists 

identify the best therapeutic strategy by linking genetic 

data with available treatment protocols. Additionally, 

these systems can provide real-time alerts about potential 

drug interactions, adverse events, or deviations from 

recommended treatment guidelines. The seamless 

integration of NLP and DSS within EHR systems is a key 

step toward achieving personalized, evidence-based 

oncology care. 

 
 Case Studies and Use Cases in Oncology 

Several case studies demonstrate the successful 

application of transformer-based NLP models in 

oncology, enhancing treatment planning and decision-

making. One notable example is the integration of 

ClinicalBERT into an oncology decision support system 

to extract relevant clinical features from electronic health 

records (EHRs). This system was able to identify cancer-

specific biomarkers and treatment histories, significantly 

aiding oncologists in personalizing therapies for patients 

with breast and lung cancer as presented in table 4 (Lee et 

al., 2020). By efficiently processing unstructured clinical 
notes, the system provided timely insights into potential 

drug interactions and adverse effects, facilitating better 

clinical outcomes. 
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Another case study involves the use of BioBERT for 

predicting patient eligibility for clinical trials based on 

EHR data. This model was able to match patients to 

appropriate trials by extracting key features such as 

disease subtype, genetic mutations, and previous 

treatment responses (Luo et al., 2022). These case studies 

highlight the potential of transformer-based models to 

improve clinical decision-making, optimize drug 

matching, and accelerate the process of clinical trial 

recruitment in oncology. 

 
Table 4 Summary of Case Studies and Use Cases in Oncology 

Use Case Purpose Challenge Oncology Benefit 

Clinical Trial Matching Matches patients to trials 

using clinical note analysis. 

Incomplete records and 

complex eligibility criteria. 

Improves access to 

personalized trial options. 

Drug Repurposing Identifies new cancer uses 

for existing drugs. 

Requires extensive annotated 

data. 

Accelerates treatment discovery 

at lower cost. 

Biomarker Discovery Extracts indicators for 

diagnosis or prognosis. 

Inconsistent biomarker 

documentation. 

Enables early detection and 

targeted therapy. 

Predictive Analytics Forecasts patient responses 

to treatments. 

Needs high-quality historical 

data. 

Supports more effective, 

individualized treatment plans. 

 

VI. EVALUATION AND PERFORMANCE 

METRICS 
 

Evaluating the performance of transformer-based 

models in clinical text mining, particularly in oncology, 

requires the use of domain-specific metrics that 

accurately reflect the model's ability to handle medical 

text. Standard NLP metrics such as precision, recall, and 

F1 score are commonly employed to assess tasks like 

Named Entity Recognition (NER) and relation extraction. 

These metrics are essential in determining how well the 

model identifies relevant entities (e.g., cancer types, 

treatments) and relationships (e.g., drug interactions) 

from clinical notes. In the context of oncology, where 

accuracy is critical, high precision ensures that the 

identified entities are relevant, while high recall 

guarantees that important data is not missed (Igba et al., 

2024). Moreover, tasks like patient stratification and 

clinical trial matching benefit from additional evaluation 

methods, such as accuracy in predicting clinical 

outcomes or trial eligibility, which directly impact patient 

care. 

 

In addition to traditional metrics, performance in 

clinical settings can also be evaluated based on model 

interpretability and clinical usability. Transformer-based 

models should be transparent enough for healthcare 

professionals to trust the model's recommendations and 

provide explanations for predictions, particularly when 

the stakes involve patient health. Techniques such as 

attention visualization or model explanation frameworks 

(e.g., LIME or SHAP) can help ensure that the model's 

decisions are understandable by clinicians. Furthermore, 

evaluating a model's ability to generalize across different 

clinical environments, such as diverse oncology centers 

or patient populations, is essential for ensuring that the 

model's performance is robust and scalable (Luo et al., 

2022). 

 
 Common Metrics: Precision, Recall, F1-score, AUC 

In evaluating transformer-based models for clinical 

text mining in oncology, precision, recall, F1-score, and 

AUC (Area Under the Curve) are fundamental metrics 

used to assess model performance. Precision measures 

the proportion of relevant instances identified by the 

model, ensuring that false positives are minimized (Peng 

et al., 2019). Recall, on the other hand, focuses on the 

model’s ability to identify all relevant instances, reducing 

the risk of missing critical data, such as cancer diagnoses 

or treatment information. The F1-score is the harmonic 

mean of precision and recall, providing a balanced 

measure when there is an uneven class distribution, as is 

often the case in medical datasets as represented in figure 

5 (Lee et al., 2020). 

 

AUC is particularly important when evaluating 

binary classification tasks, such as predicting whether a 

patient is eligible for a clinical trial. It quantifies the 

model’s ability to discriminate between classes, 

regardless of the classification threshold (Idoko et al., 

2024). These metrics together offer a comprehensive 

view of the model’s effectiveness in real-world oncology 

applications, ensuring both accurate and complete 

extraction of clinical information. 
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Fig 5 Picture of Common Metrics: Precision, Recall, F1-score, AUC (Lee et al., 2020). 

 

Figure 5: Shows a focused individual standing in 

front of a high-tech machine, deeply engaged in operating 

and evaluating an evolving machine learning model, as 

indicated by the bold title "Model Evolution" at the top. 

Surrounding the individual are key performance metrics 

Precision Score on the left, AUC (Area Under the Curve) 
at the center, and Recall on the right highlighting 

different aspects of model accuracy and effectiveness. 

Just below, Confusion Matrix appears on the left, F1 
Score in the middle, and Loss on the right, representing 

deeper diagnostic tools used to assess the model’s 

learning progress and predictive reliability. The 

individual's intense focus reflects the complexity and 

critical importance of interpreting these metrics to refine 

the model for optimal performance.    

 
 Benchmark Datasets and Clinical Corpora 

Benchmark datasets and clinical corpora play a 

critical role in evaluating the performance of transformer-

based models in clinical text mining, particularly in 

oncology. Datasets such as the MIMIC-III (Medical 

Information Mart for Intensive Care) database and the 

n2c2 challenge datasets are widely used to benchmark 

models in clinical NLP tasks (Johnson et al., 2016). 

MIMIC-III is a freely available database of de-identified 

health data that includes over 60,000 intensive care unit 

(ICU) admissions, with rich clinical notes that provide a 

valuable resource for training and evaluating models on 

tasks like patient risk prediction, drug interactions, and 

medical event detection. The n2c2 datasets, which cover 

clinical text annotation tasks such as named entity 

recognition (NER) and relation extraction, are essential 

for assessing how well models can extract information 

from unstructured clinical records and apply it to real-

world scenarios (Uzuner et al., 2018). 

 

In oncology, more specialized corpora such as the 

Cancer Genomics Cloud (CGC) dataset and the 

ONCOLOGY-TRIAGE dataset are used to evaluate 

models’ ability to extract relevant cancer-related 

information. These datasets focus on cancer-specific 

terminology, biomarkers, and treatment outcomes, 

allowing researchers to assess transformer models in 

identifying and correlating genetic mutations with drug 

treatments and clinical trial eligibility (Luo et al., 2022). 

Access to such clinical corpora is crucial for ensuring that 

transformer models can perform accurately in a 

specialized field like oncology, where precision and 

domain-specific knowledge are vital. Moreover, these 

benchmark datasets help standardize evaluation metrics, 

ensuring consistent comparisons between different 

models and enabling continuous advancements in the 

field. 

 
 Limitations in Validation and Real-World Deployment 

Despite the promise of transformer-based models in 

clinical text mining, several limitations remain when 

validating their performance and deploying them in real-

world clinical settings. One significant challenge is the 

reliance on benchmark datasets that may not fully 

represent the diverse and dynamic nature of clinical data 

encountered in actual practice. Clinical corpora, such as 

the MIMIC-III and n2c2 datasets, often contain biases 

due to demographic imbalances or limited scope, which 

can lead to models that perform suboptimally when 

applied to broader patient populations as presented in 

table 5 (Johnson et al., 2016). These datasets may not 

capture all the complexities of medical jargon, especially 

in specialized fields like oncology, where evolving 

terminology and new treatments frequently emerge. As a 

result, models validated on these datasets may face 

difficulties when deployed in real-world clinical 

environments where data is constantly changing and less 

structured. 

 

Moreover, the lack of explainability in many 

transformer-based models poses a significant barrier to 

adoption in clinical settings. In healthcare, it is critical for 

practitioners to trust and understand the 

recommendations provided by AI models, especially 

when dealing with life-altering decisions such as cancer 

treatment. However, most transformer models, while 

68 



70 

effective in extracting relevant data, are often seen as 

"black boxes," making it difficult for clinicians to 

interpret the rationale behind their predictions (Luo et al., 

2022). This lack of transparency undermines clinician 

confidence and hinders the integration of these 

technologies into clinical workflows. Additionally, real-

world deployment often faces issues related to data 

privacy and regulatory compliance, which require careful 

handling of sensitive health information to meet legal and 

ethical standards (Peng et al., 2019). Therefore, while 

transformer-based models show great promise, their 

validation and real-world deployment require overcoming 

these significant challenges to ensure their safe and 

effective use in oncology. 

 
Table 5 Summary of Limitations in Validation and Real World Deployment 

Limitation Description Challenge Impact 

Data Quality Clinical notes are often incomplete 

or inconsistently annotated. 

Affects model accuracy and 

generalization. 

Reduces trust and effectiveness 

in oncology settings. 

Interpretability Transformer models are complex 

and opaque. 

Hard for clinicians to 

understand decisions. 

Slows adoption in clinical 

workflows. 

Regulatory 

Hurdles 

Models must meet strict validation 

standards. 

Delays deployment and 

integration. 

Limits timely application in 

real-world oncology. 

System Integration Difficulty linking models with EHR 

systems. 

Technical and workflow 

compatibility issues. 

Restricts practical usage and 

automation potential. 

 

VII. CONCLUSION AND FUTURE DIRECTIONS 

 

Transformer-based models have demonstrated 

significant potential in advancing the mining of 

unstructured oncology clinical notes, offering promising 

solutions for drug matching and personalized treatment 

recommendations. These models excel at processing vast 

amounts of clinical data, extracting valuable insights, and 

supporting clinical decision-making. However, 

challenges remain, particularly with the limitations of 

benchmark datasets, data privacy concerns, and the need 

for model interpretability. Addressing these issues will be 

crucial for the widespread adoption of NLP technologies 

in clinical practice. 

 

Looking ahead, future research should focus on 

enhancing the generalizability of transformer models to 

diverse clinical environments by developing more 

representative datasets and improving model robustness. 

Additionally, efforts to increase model transparency and 

explainability will be essential to build trust among 

healthcare professionals. As these technologies evolve, 

they have the potential to revolutionize oncology care by 

enabling more accurate, timely, and personalized 

treatment options for patients, ultimately improving 

clinical outcomes and healthcare efficiency. 

 

 Summary of Key Findings 
This review has highlighted the growing role of 

transformer-based models in mining unstructured 

oncology clinical notes to improve drug matching and 

treatment decisions. Transformer architectures, such as 

BERT and GPT variants, have proven to be highly 

effective in extracting meaningful information from 

clinical data, including patient histories, disease 

classifications, and treatment outcomes. These models 

can help identify patient-specific signals that are critical 

in personalizing treatment plans, thereby improving 

patient care and outcomes in oncology. The use of 
models like BioBERT and ClinicalBERT has shown that 

fine-tuning pretrained transformers on domain-specific 

data enhances their ability to extract complex medical 

information from clinical notes. 

 

Additionally, the integration of NLP models with 

Electronic Health Records (EHR) and clinical decision 

support systems (DSS) offers significant promise in 

oncology. By enabling real-time data extraction and 

providing actionable insights, these systems help 

clinicians make informed decisions. However, challenges 

such as data privacy, model explainability, and the 

integration of evolving medical terminology remain. 

Future work will need to address these issues to further 

optimize transformer models for clinical use. 

 
 Open Challenges and Ethical Considerations 

Despite the potential of transformer-based models in 

oncology, several open challenges and ethical 

considerations must be addressed for their successful 

deployment in clinical settings. One major challenge is 

the generalization of these models across diverse 

populations and healthcare environments. Current models 

are often trained on specific datasets, which may not fully 

capture the heterogeneity of patient populations, leading 

to potential biases in decision-making. Ensuring that 

models are adaptable and unbiased is crucial to providing 

equitable care for all patients. 

 

Ethically, the use of sensitive patient data raises 

significant privacy concerns. While advancements in data 

de-identification and encryption techniques offer some 

protection, the risk of data breaches or misuse remains. 

Additionally, the lack of transparency and explainability 

in some transformer models makes it difficult for 

clinicians to trust and interpret the model's 

recommendations, limiting their practical use in high-

stakes environments like oncology. Addressing these 

issues will be critical to ensuring that these technologies 

are deployed responsibly and effectively. 

 

 Opportunities for Future Research and Innovation 
Future research in transformer-based models for 

oncology clinical note mining should focus on improving 

model generalization across diverse patient populations 

and clinical settings. Developing more inclusive and 

representative datasets will help reduce biases and ensure 

69 



71 

that models can provide equitable and accurate 

recommendations for all patients, regardless of their 

demographic or medical background. Moreover, refining 

these models to adapt to the rapidly evolving medical 

knowledge, including new treatments and emerging 

cancer types, will enhance their real-time applicability in 

clinical practice. 

 

In addition to enhancing model robustness, future 

research could explore the integration of multimodal data 

sources, such as medical imaging, genetic information, 

and patient-reported outcomes, with text-based clinical 

notes. This would allow for more comprehensive, data-

driven treatment plans. Innovations in model 

interpretability, such as the development of explainable 

AI techniques tailored to clinical environments, will also 

be crucial. By improving transparency and trust, these 

advancements will encourage broader adoption of NLP 

technologies in oncology, ultimately improving patient 

care and clinical outcomes. 
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