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Abstract 

Advancements in data-driven cheminformatics have significantly transformed the early-stage discovery and optimization of 

oncology therapeutics derived from natural compounds. This review examines the integration of machine learning (ML) and 

quantitative structure–activity relationship phytochemicals and marine-derived agents. Emphasis is placed on the use of high-

dimensional molecular descriptors, fingerprinting techniques, and graph-based neural networks for feature extraction and 

predictive modeling. Public bioactivity databases such as ChEMBL, PubChem BioAssay, and BindingDB are explored as 

primary sources for curated compound-target interaction data, which underpin supervised learning frameworks. Furthermore, 

the review highlights recent breakthroughs in multi-task learning, deep generative models, and transfer learning paradigms 

that enhance generalizability across diverse chemical scaffolds and rare oncogenic targets. Challenges such as model 

interpretability, data sparsity, and bioavailability prediction are discussed, with proposed strategies including explainable AI 

(XAI) and hybrid mechanistic-ML models. This review highlights the transformative potential of cheminformatics in 

accelerating oncology drug discovery by reducing reliance on labor-intensive wet-lab screening and enabling virtual 

prioritization of lead compounds from vast natural product libraries. 

 

Keywords: Cheminformatics, Bioactivity Prediction, Natural Compounds, Oncology Drug Discovery, Machine Learning 
Models. 
 

I. INTRODUCTION 

 
 Background on Natural Compounds in Oncology 

Natural compounds have long been recognized as vital 

sources of chemotherapeutic agents, with extensive 

documentation showing their critical role in oncology drug 

development. Between 1981 and 2019, almost half of all 

approved small-molecule anticancer drugs were either 

natural products, semi-synthetic derivatives, or 

pharmacophore-inspired synthetic compounds, hilighting 

the unparalleled chemical diversity they offer (Newman & 

Cragg, 2020). These molecules, characterized by intricate 

stereochemistry and diverse functional groups, present 

opportunities to modulate complex biological targets that 

synthetic libraries often fail to achieve. Prominent 

examples include paclitaxel from Taxus brevifolia, 

vincristine from Catharanthus roseus, and camptothecin 

analogs, all of which revolutionized chemotherapy 

protocols. 

 

The importance of natural product scaffolds lies not 

only in their bioactivity but also in their ability to inspire 

novel synthetic modifications for enhanced efficacy and 

reduced toxicity (Li & Vederas, 2009). Natural compounds 

exert anticancer effects through diverse mechanisms such 

as microtubule stabilization, topoisomerase inhibition, and 

induction of programmed cell death pathways. Moreover, 

emerging sources such as marine organisms and endophytic 

fungi have expanded the oncology pipeline with agents like 

trabectedin and salinosporamide A. Despite their successes, 

challenges such as supply limitations, complex isolation, 

and suboptimal pharmacokinetics necessitate the adoption 

of computational cheminformatics to accelerate virtual 

screening, scaffold optimization, and drug-like property 

prediction. 

 

 Emergence of Cheminformatics and Data-Driven 

Approaches 

The integration of cheminformatics into oncology 

research marks a paradigm shift from traditional empirical 

screening toward data-driven drug discovery models. 

https://www.ijsrmt.com/
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Cheminformatics, encompassing quantitative structure–

activity relationship (QSAR) modeling, molecular 

descriptor analysis, and virtual screening, enables the 

systematic evaluation of large chemical libraries for 

potential anticancer activity (Cherkasov et al., 2014). By 

leveraging curated datasets and computational models, 

researchers can now predict the bioactivity, 

pharmacokinetics, and toxicity of natural compounds 

before costly and time-intensive experimental validation. 

 

The emergence of machine learning and artificial 

intelligence (AI) further amplified cheminformatics 

capabilities, introducing generative algorithms capable of 

proposing novel chemical entities optimized for oncogenic 

targets (Walters & Murcko, 2020). These AI-driven 

platforms, employing techniques such as deep generative 

models and reinforcement learning, have shown promise in 

navigating the vast chemical space of natural products to 

identify bioactive analogs with improved drug-like 

properties. For example, deep learning frameworks can 

predict molecular fingerprints from limited bioactivity data, 

enabling virtual hit expansion for rare cancer subtypes. 

Additionally, cheminformatics tools now allow multitarget 

profiling, which is crucial for addressing the 

polypharmacology characteristic of many oncological 

diseases. Consequently, the convergence of data science 

and chemistry has positioned cheminformatics as an 

indispensable engine driving the rapid, cost-effective 

discovery of new oncology therapeutics sourced from 

natural compounds. 

 

 Scope and Objectives of the Review  
This review systematically explores how data-driven 

cheminformatics models are advancing the prediction of 

bioactivity for natural compounds in oncology drug 

discovery. The study covers the entire computational 

workflow, beginning with data acquisition from public 

bioactivity repositories, followed by molecular 

representation techniques such as descriptors, fingerprints, 

and graph-based models. It then examines machine learning 

and deep learning methods used to build predictive models 

capable of prioritizing promising natural compounds for 

anticancer activity. 

 

The objectives of this review are threefold. First, to 

outline the current state of computational methodologies 

that enable virtual screening and bioactivity prediction in 

natural product libraries. Second, to evaluate case studies 

where cheminformatics successfully enhanced the 

identification of bioactive oncology candidates from 

natural sources. Third, to critically assess the challenges in 

model interpretability, data quality, and generalization 

across complex cancer phenotypes, while suggesting 

emerging solutions such as hybrid modeling and 

explainable AI techniques. Overall, this review aims to 

provide a comprehensive and technical guide for 

researchers and practitioners interested in accelerating 

oncology drug discovery using computational approaches 
focused on natural products. 

 

 

 Structure of the Paper 
The paper is organized into six major sections. Section 

1 provides an introduction, covering the background of 

natural compounds in oncology, the emergence of 

cheminformatics, and the objectives of the review. Section 

2 discusses data sources and molecular representations 

critical for modeling, including public databases and 

molecular encoding techniques. Section 3 examines 

machine learning and deep learning approaches applied to 

predict the bioactivity of natural products. Section 4 

presents practical applications, highlighting case studies 

involving phytochemicals and marine-derived compounds. 

Section 5 addresses the current challenges in data-driven 

cheminformatics and reviews emerging solutions such as 

explainable AI and hybrid modeling. Finally, Section 6 

offers future perspectives, emphasizing new computational 

strategies and the evolving role of cheminformatics in 

precision oncology. 

 

II. DATA SOURCES AND MOLECULAR 

REPRESENTATIONS 

 

 Public Bioactivity Databases: ChEMBL, PubChem 
BioAssay, BindingDB 

The foundation of data-driven cheminformatics 

models lies in access to robust and well-curated bioactivity 

databases. ChEMBL, PubChem BioAssay, and BindingDB 

are three pivotal resources that facilitate the virtual 

exploration of chemical-biological interaction landscapes 

critical for oncology research. ChEMBL is a manually 

curated database containing bioactivity information on over 

1.9 million compounds, including data on binding, 

functional assays, and ADMET properties derived 

primarily from peer-reviewed publications (Gaulton et al., 

2017). For natural products in oncology, ChEMBL 

provides structured annotations linking compounds to 

cancer-relevant targets such as kinases, nuclear receptors, 

and epigenetic modulators, thereby supporting predictive 

modeling endeavors. 

 

Similarly, PubChem BioAssay serves as an expansive 

repository hosting over one million bioactivity assay 

records, integrating information from high-throughput 

screening (HTS) campaigns, particularly for oncology-

related targets like p53 modulators and tyrosine kinase 

inhibitors (Wang et al., 2017). PubChem’s integration with 

compound structures, assay descriptions, and experimental 

conditions makes it a valuable asset for constructing 

training datasets aimed at machine learning applications in 

virtual screening and drug repositioning. 

 

BindingDB specifically focuses on binding affinities, 

documenting over 1.2 million binding measurements across 

protein-ligand complexes, with notable emphasis on 

kinases, GPCRs, and oncology-relevant enzymes. By 

providing kinetic parameters such as IC₅₀, Kᵢ, and K_d 

values, BindingDB enables quantitative structure–activity 

relationship (QSAR) modeling with enriched data quality 
as represented in Table 1. 
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Together, these databases enable the aggregation of 

comprehensive datasets necessary for training supervised 

learning models, feature extraction, and validating 

bioactivity predictions for natural compounds in oncology. 

The strategic utilization of these resources ensures that 

cheminformatics pipelines are anchored in reproducible, 

high-confidence biological evidence. 

 

Table 1 Summary of Key Public Bioactivity Databases for Oncology Modeling 

Database Name Focus Area Key Features Role in Oncology Modeling 

ChEMBL Curated bioactivity data 

from literature sources 

Compound-target bioactivities, 

ADMET properties, cancer-

relevant targets 

Supports predictive modeling for 

oncology pathways and virtual 

lead prioritization 

PubChem 

BioAssay 

High-throughput screening 

assay data 

Assay descriptions, compound 

structures, experimental 

conditions metadata 

Enables large-scale dataset 

construction for machine learning 

in virtual screening 

BindingDB Experimental binding 

affinity data 

IC₅₀, Kᵢ, and K_d values across 

proteins like kinases, GPCRs, and 

enzymes 

Provides quantitative affinity data 

essential for QSAR modeling and 

target specificity predictions 

ChEMBL Curated bioactivity data 

from literature sources 

Compound-target bioactivities, 

ADMET properties, cancer-

relevant targets 

Supports predictive modeling for 

oncology pathways and virtual 

lead prioritization 

 

 Molecular Descriptors, Fingerprints, and Graph 

Representations 
Accurately representing chemical structures is a 

fundamental requirement for building predictive 

cheminformatics models. Molecular descriptors are 

numerical values derived from molecular graphs, 

characterizing properties such as topology, geometry, 

electronic distribution, and atom connectivity (Todeschini 

& Consonni, 2009). These descriptors, which include 

simple counts (e.g., molecular weight, hydrogen bond 

donors) and complex indices (e.g., topological polar surface 

area, Wiener index), translate intricate molecular structures 

into machine-readable formats essential for supervised 

learning models. In oncology-focused modeling, 

descriptors sensitive to pharmacophoric features like 

planarity and lipophilicity are particularly critical for 

predicting bioactivity profiles. 

 

Molecular fingerprints offer a more compact 

representation, encoding the presence or absence of 

substructures or chemical patterns as binary or hashed 

vectors. Popular fingerprinting methods, such as Extended 

Connectivity Fingerprints (ECFPs) and MACCS keys, 

allow for rapid similarity searches and clustering operations 

critical for virtual screening of natural product libraries. 

Fingerprints also serve as input features for classical 

machine learning algorithms like random forests, support 

vector machines, and gradient boosting frameworks in 

bioactivity prediction tasks. 

 

Graph-based representations, enabled by 

advancements in deep learning, have further revolutionized 

molecular encoding. Unlike traditional descriptors or 

fingerprints, graph convolutional networks (GCNs) process 

molecules directly as graphs, where atoms are nodes and 

bonds are edges, learning hierarchical chemical features 

automatically (Duvenaud et al., 2015). This approach 

eliminates the need for hand-crafted features and has 
demonstrated superior performance in modeling natural 

product-derived compounds with complex fused ring 

systems and nonstandard functional groups. Thus, the 

choice of molecular representation significantly influences 

the performance, interpretability, and generalization 

capabilities of cheminformatics models targeting 

oncological applications. 

 

 Data Preprocessing and Curation Challenges 

Reliable predictive modeling in cheminformatics 

hinges critically on the quality and integrity of the input 

data. Raw chemical databases often contain redundancies, 

structural errors, and inconsistent annotations, necessitating 

rigorous preprocessing and curation protocols to ensure 

model robustness and generalizability (Fourches, Muratov, 

& Tropsha, 2016). In oncology-focused cheminformatics 

pipelines, particular care must be taken to correct 

tautomeric inconsistencies, standardize protonation states, 

remove salts and counterions, and verify stereochemistry. 

Failure to address these artifacts can propagate noise into 

machine learning models, leading to erroneous predictions 

of bioactivity for natural compounds. 

 

An essential step in preprocessing is structure 

normalization, wherein variations in molecular 

representation, such as depiction of aromatic systems or 

charge assignments, are harmonized across datasets. 

Equally critical is the identification and removal of 

duplicate records, which can artificially inflate model 

performance metrics if inadvertently included in both 

training and testing sets. Williams (2012) emphasized that 

even high-profile databases like ChEMBL and PubChem 

may require secondary curation to eliminate misdrawn 

structures, incomplete entries, and ambiguous activity 

annotations. 

 

Beyond chemical structure validation, bioactivity data 

must also be carefully filtered. Challenges such as 

ambiguous assay descriptions, inconsistent endpoint 

measurements (e.g., IC₅₀ vs. EC₅₀), and varying 

experimental conditions can undermine model fidelity if 
not meticulously curated. Cross-referencing experimental 

protocols, converting endpoint metrics into standardized 

units, and flagging unreliable data points are recommended 
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best practices. Moreover, the imbalanced distribution of 

active versus inactive compounds, typical in natural 

product oncology datasets, necessitates strategic sampling 

or augmentation techniques to mitigate model bias as 

shown in Figure 1. Consequently, robust data curation is 

foundational to building high-confidence cheminformatics 

models capable of accurately predicting anticancer 

bioactivities in complex natural product libraries. 

 

 
Fig 1 Diagram Showing Preprocessing Challenges and Curation Strategies in Oncology Cheminformatics. 

 

Fig 1 presents a high-level outline of the key 

challenges and solutions involved in data preprocessing and 

curation for oncology-focused cheminformatics. At the 

center is the critical role of data quality in enabling reliable 

predictive modeling. The first branch highlights common 

data issues, including structural inconsistencies such as 

unnormalized tautomers, salts, and stereochemistry errors, 

as well as problems like duplicate entries, incomplete 

bioactivity records, and inconsistent assay units (e.g., IC₅₀ 

vs. EC₅₀). The second branch outlines strategic curation 

responses to these issues, including structure normalization 

to standardize molecular representations, assay 

harmonization to align experimental conditions, rigorous 

filtering to remove unreliable data, and careful duplicate 

removal to prevent data leakage across model training and 

validation. Together, these curated processes ensure that 

input data is clean, consistent, and suitable for high-

confidence modeling in oncology drug discovery using 

natural products. 

 

III. MACHINE LEARNING AND PREDICTIVE 

MODELING IN CHEMINFORMATICS 

 

 Traditional QSAR Models and Regression Techniques 
Quantitative Structure–Activity Relationship (QSAR) 

modeling forms the foundational core of traditional 

cheminformatics approaches for predicting the bioactivity 

of chemical compounds, including natural products in 

oncology. QSAR models establish mathematical 

relationships between molecular descriptors and biological 

activity endpoints, providing a framework to infer the 

activity of untested compounds from known structural 

features (Cherkasov et al., 2014). Linear models, such as 

multiple linear regression (MLR) and partial least squares 

(PLS), have historically dominated early QSAR 

applications due to their interpretability and computational 

simplicity. These methods rely on the assumption that 

biological activity is a linear combination of selected 

molecular descriptors, making them particularly attractive 

for early-stage virtual screening. 

 

However, real-world bioactivity data often exhibit 

non-linear relationships, necessitating the use of non-linear 

regression techniques such as support vector regression 

(SVR) and k-nearest neighbor (k-NN) algorithms to 

enhance predictive accuracy. Validation remains a critical 

component of QSAR modeling, with internal methods (e.g., 

cross-validation) and external validations (e.g., testing on 

independent datasets) serving as benchmarks to assess 

model generalizability (Gramatica, 2007). Rigorous 

validation ensures that models do not suffer from 

overfitting, a common pitfall when dealing with high-

dimensional natural product datasets. 

 

In oncology drug discovery, classical QSAR models 

have been used to prioritize natural compounds targeting 

kinases, DNA topoisomerases, and apoptotic regulators. 

Despite their historical success, traditional QSAR 

approaches face limitations when handling highly diverse, 

structurally complex natural products. Nevertheless, they 

remain valuable, especially when combined with modern 

ensemble strategies or used as baseline models for 

benchmarking more advanced machine learning 

architectures. Their simplicity, ease of interpretation, and 

relatively low computational demands make QSAR models 

enduring tools in cheminformatics pipelines aimed at 

oncology therapeutics discovery. 
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 Deep Learning Architectures: Graph Neural Networks 
and Autoencoders 

The evolution of deep learning has introduced 

powerful architectures capable of automatically learning 

hierarchical features from molecular data, significantly 

enhancing bioactivity prediction in oncology 

cheminformatics. Graph Neural Networks (GNNs), 

particularly Graph Convolutional Networks (GCNs), have 

gained prominence for their ability to directly operate on 

molecular graphs without requiring manual feature 

engineering. In GCNs, molecules are treated as graphs 

where atoms are nodes and bonds are edges, and the 

convolutional layers iteratively aggregate information from 

local atomic neighborhoods to learn task-specific 

representations (Kipf & Welling, 2017). This approach is 

particularly advantageous for modeling complex natural 

compounds with non-canonical structures, fused ring 

systems, and diverse functional groups, all of which 

challenge traditional descriptor-based models. 

 

Complementing GNNs, autoencoders serve as another 

deep learning framework with profound utility in 

cheminformatics. Autoencoders are neural networks 

trained to reconstruct input data after compressing it into a 

lower-dimensional latent space, effectively learning 

compact, information-rich representations (Hinton & 

Salakhutdinov, 2006). In oncology drug discovery, 

autoencoders are employed for unsupervised feature 

extraction from large chemical libraries, denoising noisy 

molecular descriptors, and even generating novel molecular 

structures through variational extensions. Their ability to 

capture subtle variations in chemical space makes them 

invaluable for navigating the highly diverse chemical 

scaffolds typical of natural products. 

 

The integration of GNNs and autoencoders into 

cheminformatics pipelines enables end-to-end learning 

workflows that bypass the limitations of handcrafted 

features as showm in Figure 2. These deep learning models 

excel not only in predicting compound bioactivity but also 

in uncovering hidden relationships between molecular 

structure and anticancer efficacy. As a result, they represent 

a transformative leap forward in the application of artificial 

intelligence to oncology-focused natural product discovery. 

 

 
Fig 2 A Block Diagram Showing GNN and Autoencoder Architectures for Bioactivity Prediction 

 

Figure 2 illustrates two key deep learning architectures 

used in oncology-focused cheminformatics: Graph Neural 

Networks (GNNs) and Autoencoders. At the center is a 

shared goal—predicting the bioactivity of natural 

compounds. The first branch, GNNs, processes molecular 

structures as graphs, treating atoms as nodes and bonds as 

edges, allowing the model to learn structural relationships 

through message passing and graph convolution. This 

enables accurate prediction of chemical behavior without 

the need for predefined descriptors, particularly useful for 

modeling complex natural products. The second branch, 

Autoencoders, begins with molecular descriptors or 

fingerprints and compresses them into a lower-dimensional 

latent space before reconstructing the input. This 

architecture supports unsupervised feature learning, 

denoising, and compound generation. Together, these 

architectures enhance predictive performance and 

flexibility in cheminformatics pipelines by extracting rich, 

hierarchical representations of molecular data tailored for 

oncology applications. 

 

 Multi-Task Learning and Transfer Learning in 
Oncology Applications 

Multi-task learning (MTL) has emerged as a powerful 

strategy in cheminformatics, where multiple related 

prediction tasks are learned simultaneously by a shared 
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model, leading to improved generalization and efficiency. 

Instead of training separate models for each oncological 

target or bioactivity endpoint, MTL architectures optimize 

shared representations that exploit correlations across tasks, 

such as overlapping signaling pathways or structural 

similarities among ligands (Ruder, 2017). For natural 

compound oncology modeling, MTL frameworks enable 

simultaneous predictions across multiple cancer 

biomarkers, such as kinase inhibition profiles, cytotoxicity 

assays, and apoptotic activity metrics, thereby reducing the 

risk of overfitting on sparse datasets typical of natural 

product libraries. 

 

Transfer learning further enhances predictive 

performance, especially when available labeled data is 

limited, as is often the case with rare or structurally unique 

natural compounds. Transfer learning involves pretraining 

a model on a large source domain and fine-tuning it on a 

smaller, related target domain (Pan & Yang, 2010). In 

cheminformatics, models initially trained on broad 

chemical bioactivity datasets, such as ChEMBL or 

PubChem assays, can be repurposed to predict bioactivities 

in specialized oncology datasets with minimal additional 

training. This approach significantly reduces data 

requirements and computational costs while preserving 

predictive accuracy. 

 

Recent innovations combine MTL and transfer 

learning to create hierarchical architectures that perform 

coarse-grained screening at early layers and specialized 

bioactivity predictions at deeper layers. Such hybrid models 

are particularly suited for natural product oncology 

research, where leveraging generalized chemical 

knowledge while capturing specific biological nuances is 

essential as presented in Table 2 . Together, multi-task and 

transfer learning paradigms represent critical advancements 

in building more versatile, efficient, and robust 

cheminformatics models capable of accelerating the 

discovery of new anticancer agents from nature’s chemical 

repertoire. 

 

Table 2 Multi-Task and Transfer Learning in Oncology Modeling 

Approach Purpose Key Techniques Impact on Natural Product Oncology 

Modeling 

Multi-Task 

Learning 

(MTL) 

Simultaneously learn 

multiple related bioactivity 

prediction tasks 

Shared neural network 

architectures, task-specific 

output heads 

Improves generalization across diverse 

oncogenic targets and enhances learning 

from limited datasets 

Transfer 

Learning 

(TL) 

Transfer knowledge from 

broad datasets to 

specialized oncology 

targets 

Pretraining on large chemical 

bioactivity datasets, fine-

tuning on rare cancer targets 

Enables accurate bioactivity prediction 

for rare targets with minimal labeled 

data 

Hybrid MTL-

TL Models 

Combine MTL and TL for 

hierarchical task learning 

Coarse-grained pretraining 

followed by fine-tuning on 

specific oncology biomarkers 

Boosts model adaptability, accelerates 

lead discovery for underexplored cancer 

pathways 

Multi-Task 

Learning 

(MTL) 

Simultaneously learn 

multiple related bioactivity 

prediction tasks 

Shared neural network 

architectures, task-specific 

output heads 

Improves generalization across diverse 

oncogenic targets and enhances learning 

from limited datasets 

 

IV. APPLICATIONS IN PREDICTING 

BIOACTIVITY OF NATURAL PRODUCTS 

 
 Case Studies on Phytochemicals and Marine-Derived 

Agents 

Natural products derived from terrestrial plants and 

marine organisms have yielded some of the most significant 

breakthroughs in oncology drug development. 

Phytochemicals such as paclitaxel from Taxus brevifolia 

and vinblastine from Catharanthus roseus exemplify the 

immense therapeutic potential locked within terrestrial 

biodiversity (Newman & Cragg, 2016). Paclitaxel operates 

through the stabilization of microtubules, arresting cancer 

cell division, and remains a cornerstone treatment for 

breast, ovarian, and lung cancers. Similarly, camptothecin, 

isolated from Camptotheca acuminata, led to the 

development of topotecan and irinotecan, critical therapies 

targeting DNA topoisomerase I, an essential enzyme for 

DNA replication in rapidly proliferating cancer cells. 

 
Marine ecosystems have also proven to be invaluable 

reservoirs of anticancer agents. Compounds such as 

trabectedin, derived from the sea squirt Ecteinascidia 

turbinata, exhibit unique DNA minor groove binding 

properties that disrupt transcription processes and tumor 

cell survival (Molinski et al., 2009). Another notable 

marine-derived agent, salinosporamide A, isolated from 

Salinispora tropica, acts as a potent proteasome inhibitor 

and has shown efficacy in multiple myeloma models. These 

marine products often feature highly complex and novel 

chemical scaffolds that defy synthetic mimicry, making 

them irreplaceable sources for new drug discovery. 

 

Data-driven cheminformatics models are increasingly 

applied to expedite the identification and optimization of 

such bioactive natural compounds. Virtual screening 

campaigns now leverage predictive modeling to prioritize 

phytochemicals and marine metabolites with high binding 

affinities to cancer-specific targets as presented in Table 3. 

Consequently, case studies in phytochemical and marine 

oncology reinforce the indispensable role of natural 

products while demonstrating how modern computational 
techniques are revitalizing their exploration for next-

generation cancer therapeutics. 
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Table 3 Key Natural Compounds from Phytochemical and Marine Sources in Oncology 

Source Example Compound Mechanism of Action Oncological Application 

Terrestrial Plants Paclitaxel (Taxus 

brevifolia) 

Stabilizes microtubules, 

inhibits mitosis 

Treatment of breast, ovarian, and 

lung cancers 

Terrestrial Plants Camptothecin 

(Camptotheca acuminata) 

Inhibits DNA topoisomerase I Basis for topotecan and irinotecan 

in solid tumor therapies 

Marine Organisms Trabectedin (Ecteinascidia 

turbinata) 

Binds DNA minor groove, 

disrupts transcription 

Approved for soft tissue sarcomas 

and ovarian cancer 

Marine Organisms Salinosporamide A 

(Salinispora tropica) 

Inhibits proteasome function Investigated for multiple myeloma 

and hematologic malignancies 

 
 Target Specificity, Off-Target Effects, and Toxicity 

Predictions 

Predicting target specificity and minimizing off-target 

effects are critical components of oncology drug discovery, 

especially when working with structurally complex natural 

products. Computational approaches, including 

cheminformatics and machine learning, have become 

indispensable for early-stage prediction of both desired 

interactions and potential toxic liabilities. Target specificity 

modeling focuses on identifying compounds that interact 

selectively with oncogenic targets while avoiding 

promiscuous binding to non-cancer-related proteins, a 

major cause of side effects (Ekins & Williams, 2010). 

Techniques such as structure-based virtual screening and 

ligand-based similarity models are widely applied to rank 

natural compounds based on predicted binding affinities 

and selectivity indices. 

 

Off-target profiling leverages predictive models 

trained on large datasets containing known bioactivity 

profiles across multiple protein families. By using 

molecular descriptors and fingerprint similarity searches, 

researchers can anticipate potential unintended interactions, 

flagging molecules likely to cause cardiotoxicity, 

hepatotoxicity, or neurological side effects. Toxicity 

prediction models also integrate chemical property 

thresholds (e.g., lipophilicity, molecular weight) and 

machine learning classifiers trained to identify structural 

alerts associated with toxicological outcomes (Cheng et al., 

2012). 

 

In oncology, where therapeutic windows can be 

narrow, early computational prediction of off-target effects 

helps prioritize lead compounds that balance efficacy and 

safety. Furthermore, advances in multi-target modeling 

allow simultaneous evaluation of a molecule’s 

polypharmacological landscape, enhancing the ability to 

uncover synergistic interactions or harmful cross-activities. 

Incorporating predictive toxicity and off-target analytics 

into the cheminformatics workflow not only improves 

success rates in downstream experimental validation but 

also accelerates the translation of natural compounds into 

clinically viable oncology therapeutics. 

 

 

 

 
 

 

 Integration of Virtual Screening and Hit-to-Lead 
Prioritization 

Virtual screening (VS) represents a cornerstone in 

modern cheminformatics pipelines, particularly for 

oncology drug discovery using natural products. Structure-

based and ligand-based virtual screening methodologies 

enable the rapid identification of potential bioactive 

compounds from large chemical libraries by evaluating 

their fit to specific biological targets or known active 

ligands (Lionta et al., 2014). In the context of natural 

products, VS allows researchers to navigate vast molecular 

diversity, prioritizing compounds with favorable binding 

affinity, pharmacophoric features, and drug-likeness 

properties, thus reducing experimental burden. 

 

Integration with hit-to-lead prioritization strategies is 

critical to move beyond simple virtual hits toward 

compounds with optimized efficacy, selectivity, and 

developability. After virtual screening, candidate 

compounds are further evaluated using cheminformatics-

driven scoring functions that predict ADMET properties, 

synthetic accessibility, and potential off-target effects. 

Techniques such as consensus scoring, where multiple 

predictive models are combined, increase the reliability of 

lead selection by mitigating bias introduced by individual 

algorithms (Schneider, 2010). 

 

In natural product oncology, the hit-to-lead process 

often involves iterative refinement cycles, wherein top-

ranked virtual hits undergo additional structure-activity 

relationship (SAR) modeling, docking studies, and even 

early-stage molecular dynamics simulations to validate 

binding modes. Cheminformatics models guide medicinal 

chemists in suggesting modifications to improve 

bioavailability, metabolic stability, and target engagement 

without compromising the structural integrity crucial to 

natural product-derived compounds. 

 

Thus, the tight integration of virtual screening with 

systematic hit-to-lead optimization accelerates the 

identification of high-quality, bioactive natural compounds 

poised for further preclinical development as shown in 

Figure 3. This approach exemplifies how computational 

modeling transforms traditional discovery workflows into 

dynamic, data-driven engines for efficient oncology drug 

development. 
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Fig 3 Workflow Diagram for Streamlined Virtual Screening and Lead Optimization 

 

Figure 3 illustrates a streamlined workflow integrating 

virtual screening with hit-to-lead prioritization in oncology-

focused cheminformatics. At the core is the combined 

process, which begins with the virtual screening phase, 

where both structure-based and ligand-based techniques are 

employed to evaluate large libraries of natural compounds. 

This phase includes initial filtering using docking scores 

and drug-likeness criteria such as ADMET properties. The 

process then transitions into the hit-to-lead prioritization 

phase, where selected virtual hits undergo structure-activity 

relationship (SAR) analysis and lead optimization. This 

step focuses on refining compound potency, selectivity, and 

pharmacokinetic properties to identify the most promising 

candidates for experimental validation. Together, these two 

phases create a cohesive pipeline that accelerates the 

discovery of effective anticancer agents from natural 

product sources. 

 

V. CHALLENGES AND EMERGING 

SOLUTIONS 

 
 Data Sparsity, Imbalanced Datasets, and Model 

Generalization 

Data sparsity and class imbalance present significant 

challenges in cheminformatics modeling for natural 

product oncology discovery. Sparsity arises due to the 

limited availability of experimentally validated bioactivity 

data for many natural compounds, leading to datasets with 

incomplete feature-target mappings. Machine learning 

models trained on sparse data often exhibit poor 

generalization, overfitting to the few available active 

compounds and failing to predict the bioactivity of novel 
scaffolds accurately (He & Garcia, 2009). 

 

Compounding this issue, natural product datasets are 

inherently imbalanced, with a disproportionate number of 

inactive or weakly active compounds relative to potent 

bioactives. Standard classifiers tend to favor the majority 

class, resulting in high overall accuracy but poor sensitivity 

in identifying the minority (active) class — a critical failure 

in oncology drug discovery where identifying rare hits is 

paramount (Sun, Wong, & Kamel, 2009). Techniques such 

as Synthetic Minority Over-sampling Technique 

(SMOTE), adaptive synthetic sampling (ADASYN), and 

cost-sensitive learning have been developed to address 

imbalance by either enriching minority class samples or 

penalizing misclassifications asymmetrically during model 

training. 

 

Model generalization in the presence of sparse and 

imbalanced data requires careful architectural and 

methodological choices. Ensemble methods like random 

forests and gradient boosting are often preferred due to their 

inherent robustness to noisy or skewed data. Additionally, 

regularization techniques such as dropout, weight decay, 

and early stopping help prevent overfitting in deep learning 

models. Data augmentation strategies, including the 

generation of virtual compounds via SMILES-based 

perturbations or molecular graph augmentations, further 

enhance diversity and help models capture underlying 

chemical-biological relationships more effectively as 

presented in Table 4. 

 

Addressing sparsity and imbalance is not merely a 

preprocessing concern; it is integral to building 

cheminformatics models capable of reliably predicting 
novel oncology therapeutics from underexplored natural 

product spaces. 
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Table 4 Challenges and Solutions for Sparse and Imbalanced Oncology Datasets 

Challenge Description Key Techniques to Address It Impact on Modeling 

Data Sparsity Limited availability of labeled 

bioactivity data for natural 

compounds 

Data augmentation, transfer 

learning, virtual sample 

generation 

Reduces overfitting, improves 

generalization to unseen 

compounds 

Imbalanced 

Datasets 

Dominance of inactive compounds 

over active ones in datasets 

SMOTE, cost-sensitive learning, 

resampling techniques 

Enhances model sensitivity to 

minority (active) class 

predictions 

Model 

Overfitting 

Models memorize training data 

rather than generalize 

Regularization methods (dropout, 

weight decay), early stopping 

Improves predictive robustness 

on new natural product 

scaffolds 

Poor 

Generalization 

Difficulty in applying models to 

novel or rare chemical structures 

Ensemble methods, few-shot 

learning, graph data augmentation 

Expands chemical space 

coverage, boosts reliability in 

oncology predictions 

 

 Explainable AI (XAI) for Model Interpretability 
The increasing complexity of machine learning 

models in cheminformatics, particularly deep learning 

architectures, has led to concerns regarding their 

interpretability and transparency. In oncology drug 

discovery from natural products, where decision-making 

impacts critical therapeutic directions, black-box models 

are insufficient. Explainable AI (XAI) addresses this 

challenge by providing mechanisms to render machine 

learning predictions understandable to domain experts 

without compromising predictive performance (Gilpin et 

al., 2018). 

 

Several XAI techniques have been tailored for 

cheminformatics. Feature attribution methods, such as 

SHAP (SHapley Additive exPlanations) and LIME (Local 

Interpretable Model-agnostic Explanations), identify which 

molecular substructures or descriptors contribute most 

significantly to a given bioactivity prediction. These 

methods enable researchers to discern whether a model’s 

reasoning aligns with known pharmacophoric features or 

unexpected chemical motifs, facilitating trust and 

validation as Shown in Figure 4. 

 

Figure 4 presents a structured sketch of how 

Explainable AI (XAI) enhances interpretability in 

cheminformatics models used for oncology drug discovery. 

At the core is the challenge of black-box complexity in deep 

learning models, particularly when high-stakes decisions 

depend on model outputs. The diagram branches into two 

major XAI techniques — SHAP and LIME — which 

provide molecular-level insights by identifying the 

contribution of specific features or substructures to 

prediction outcomes. Additional branches outline the 

benefits these techniques offer, such as aligning predictions 

with pharmacophoric expectations, enabling domain expert 

trust, and improving model validation. Finally, the strategic 

impact of XAI is emphasized, showing how it facilitates 

regulatory transparency, interpretable compound 

prioritization, and more cohesive collaboration between 

computational scientists and medicinal chemists. Together, 

these elements demonstrate how XAI transforms opaque 

machine learning models into interpretable and actionable 

tools in natural product oncology research. 

 

 

 

 
Fig 4 Diagram Showing the Role of Explainable AI in Oncology Cheminformatics 
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 Hybrid Approaches: Mechanistic Modeling Combined 

with Machine Learning 
Hybrid modeling approaches that integrate 

mechanistic knowledge with machine learning algorithms 

represent a promising frontier in cheminformatics, 

particularly for oncology-focused natural product research. 

Mechanistic models encode prior biological or chemical 

knowledge, such as molecular binding kinetics, cellular 

signaling cascades, or pharmacokinetic principles, 

providing a structured framework that complements the 

data-driven flexibility of machine learning models (van der 

Schaar et al., 2018). 

 

Physics-informed neural networks (PINNs), for 

example, embed differential equations governing chemical 

or biological systems directly into neural network training, 

ensuring that predictions adhere to known mechanistic 

constraints (Raissi, Perdikaris, & Karniadakis, 2019). In the 

context of oncology drug discovery, PINNs can model 

drug-target binding dynamics or simulate intracellular 

pathway modulations induced by natural compounds, 

enhancing the physiological realism of predictive outputs. 

By incorporating domain-specific rules into the training 

objective, hybrid models not only improve predictive 

accuracy but also enhance interpretability and 

generalization to unseen molecular scaffolds. 

 

Another application of hybrid modeling involves 

coupling machine learning-based bioactivity prediction 

with mechanistic toxicity models to better anticipate 

adverse effects of natural products early in the discovery 

pipeline. Systems biology models describing tumor 

progression or resistance mechanisms can also be 

integrated with cheminformatics predictors to simulate 

long-term therapeutic outcomes, guiding compound 

prioritization beyond simple binding affinity metrics. 

 

Hybrid approaches thus overcome some inherent 

limitations of purely data-driven models, such as 

susceptibility to overfitting or lack of biological 

plausibility. They enable a deeper, mechanistically 

coherent understanding of the interaction between natural 

product-derived molecules and oncological targets, 

ultimately facilitating more robust translation from in silico 

predictions to clinical candidates. 

 

Doshi-Velez and Kim (2017) emphasized that 

interpretability should not be an afterthought but a core 

design principle in model development. For models 

predicting anticancer activity, integrating interpretability 

constraints — such as sparsity-inducing penalties or 

attention mechanisms focused on pharmacologically 

relevant atoms — enhances both model usability and 

regulatory compliance. Moreover, interpretable models aid 

in hypothesis generation, allowing researchers to propose 

new chemical modifications based on model-extracted 

structure-activity relationships (SAR). 
 

Incorporating XAI tools into the cheminformatics 

pipeline transforms opaque predictive models into 

collaborative tools for scientific discovery, bridging 

computational analytics and medicinal chemistry expertise. 

This alignment is critical for ensuring the safe, effective, 

and transparent advancement of natural product-derived 

oncology therapeutics. 

 

VI. FUTURE PERSPECTIVES AND 

CONCLUSION 

 
 Advances in Few-Shot and Zero-Shot Learning for Rare 

Oncology Targets 

The challenge of predicting bioactivity for rare 

oncology targets with limited training data has catalyzed 

the adoption of few-shot and zero-shot learning techniques 

in cheminformatics. Few-shot learning enables models to 

generalize bioactivity predictions from just a handful of 

labeled examples, dramatically reducing the dependency on 

large annotated datasets. In oncology-focused natural 

product discovery, where unique chemical scaffolds and 

underexplored biological targets are common, few-shot 

approaches empower researchers to build predictive models 

even when only a small number of bioactivity 

measurements are available. 

 

Zero-shot learning extends this capability further by 

enabling models to make predictions for entirely unseen 

classes or targets based solely on auxiliary information, 

such as target protein sequences, molecular descriptors, or 

ontological relationships. In natural product research, this 

allows predictive frameworks to infer interactions with 

novel cancer biomarkers without the need for explicit 

training examples. Embedding techniques, such as learning 

shared latent spaces between compounds and targets, 

facilitate zero-shot generalization by capturing underlying 

patterns between chemical structure and biological 

function. 

 

Advances in meta-learning, model-agnostic meta-

learning (MAML) algorithms, and transfer learning 

strategies have enhanced the feasibility of few-shot and 

zero-shot learning in real-world oncology datasets. These 

methods dynamically adapt model parameters to new tasks 

with minimal retraining, offering a pragmatic solution to 

the pervasive data scarcity problem in natural compound 

oncology pipelines. Integrating these advanced learning 

paradigms with traditional cheminformatics workflows 

ensures a more flexible and scalable approach to identifying 

promising anticancer leads from underrepresented regions 

of chemical and biological space. 

 

 Role of Cheminformatics in Precision Oncology and 
Personalized Therapeutics 

The integration of cheminformatics into precision 

oncology initiatives is transforming how natural 

compounds are evaluated and deployed for personalized 

cancer therapies. Precision oncology emphasizes tailoring 

therapeutic interventions based on the unique genetic, 
molecular, and environmental profile of each patient. 

Cheminformatics tools enable rapid screening and 

prioritization of natural compounds that align with specific 
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oncogenic mutations, pathway deregulations, or tumor 

microenvironment characteristics observed in individual 

patients. 

 

By leveraging predictive bioactivity models linked to 

genomic and proteomic data, cheminformatics can identify 

compounds most likely to modulate critical disease drivers 

unique to a patient's cancer subtype. Moreover, structure-

activity relationship (SAR) models refined through patient-

specific molecular profiles allow for the customization of 

compound selection, optimizing efficacy while minimizing 

toxicity. In silico screening workflows can simulate the 

interaction of natural products with mutated receptors or 

variant enzymes, uncovering opportunities for selective 

targeting that conventional screening methods might 

overlook. 

 

Cheminformatics also plays a vital role in optimizing 

combination therapies, where multiple natural compounds 

are selected based on their synergistic effects against 

heterogeneous tumor populations. Predictive modeling of 

drug-drug interactions, resistance mechanisms, and 

pharmacogenomic variations further refines therapeutic 

strategies, enhancing treatment durability and patient 

outcomes. As molecular profiling becomes standard 

practice in oncology care, cheminformatics-driven 

pipelines are poised to accelerate the development of 

personalized natural product-based interventions, bridging 

the gap between bench discovery and individualized 

clinical application. 

 

 Final Reflections and Recommendations 
The convergence of data-driven cheminformatics and 

natural product oncology research is reshaping the 

landscape of anticancer drug discovery. While traditional 

wet-lab screening remains essential, computational 

pipelines now enable more strategic and efficient 

exploration of the vast chemical diversity offered by nature. 

Models that accurately predict bioactivity, toxicity, and 

drug-likeness properties streamline the prioritization of 

natural compounds, reducing time and resource 

expenditures. 

 

However, realizing the full potential of these 

approaches requires addressing critical challenges, 

including data sparsity, imbalance, and model 

interpretability. Investment in curated, high-quality 

datasets tailored to oncology applications is essential. 

Additionally, expanding the use of hybrid modeling 

strategies that integrate mechanistic biological knowledge 

with machine learning can enhance model robustness and 

clinical relevance. Emphasizing interpretability through 

explainable AI frameworks ensures that cheminformatics 

models serve not merely as predictive engines but as 

collaborative tools supporting scientific discovery and 

therapeutic innovation. 

 

Future efforts should focus on expanding few-shot and 
zero-shot learning methodologies to enable predictions 

across rare and emerging cancer targets. Moreover, 

embedding cheminformatics workflows into precision 

oncology frameworks will facilitate the translation of 

natural product leads into personalized treatment regimens. 

By embracing interdisciplinary collaboration between 

computational scientists, medicinal chemists, and 

oncologists, the field can accelerate the identification of 

next-generation therapeutics derived from the immense, 

largely untapped reservoir of natural compounds. 
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