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Abstract
Advancements in data-driven cheminformatics have significantly transformed the early-stage discovery and optimization of
oncology therapeutics derived from natural compounds. This review examines the integration of machine learning (ML) and
quantitative structure—activity relationship phytochemicals and marine-derived agents. Emphasis is placed on the use of high-
dimensional molecular descriptors, fingerprinting techniques, and graph-based neural networks for feature extraction and
predictive modeling. Public bioactivity databases such as ChREMBL, PubChem BioAssay, and BindingDB are explored as
primary sources for curated compound-target interaction data, which underpin supervised learning frameworks. Furthermore,
the review highlights recent breakthroughs in multi-task learning, deep generative models, and transfer learning paradigms
that enhance generalizability across diverse chemical scaffolds and rare oncogenic targets. Challenges such as model
interpretability, data sparsity, and bioavailability prediction are discussed, with proposed strategies including explainable Al
(XAI) and hybrid mechanistic-ML models. This review highlights the transformative potential of cheminformatics in
accelerating oncology drug discovery by reducing reliance on labor-intensive wet-lab screening and enabling virtual
prioritization of lead compounds from vast natural product libraries.

Keywords: Cheminformatics, Bioactivity Prediction, Natural Compounds, Oncology Drug Discovery, Machine Learning
Models.

l. INTRODUCTION The importance of natural product scaffolds lies not
only in their bioactivity but also in their ability to inspire

» Background on Natural Compounds in Oncology

Natural compounds have long been recognized as vital
sources of chemotherapeutic agents, with extensive
documentation showing their critical role in oncology drug
development. Between 1981 and 2019, almost half of all
approved small-molecule anticancer drugs were either
natural  products, semi-synthetic  derivatives, or
pharmacophore-inspired synthetic compounds, hilighting
the unparalleled chemical diversity they offer (Newman &
Cragg, 2020). These molecules, characterized by intricate
stereochemistry and diverse functional groups, present
opportunities to modulate complex biological targets that
synthetic libraries often fail to achieve. Prominent
examples include paclitaxel from Taxus brevifolia,
vincristine from Catharanthus roseus, and camptothecin
analogs, all of which revolutionized chemotherapy
protocols.

novel synthetic modifications for enhanced efficacy and
reduced toxicity (Li & Vederas, 2009). Natural compounds
exert anticancer effects through diverse mechanisms such
as microtubule stabilization, topoisomerase inhibition, and
induction of programmed cell death pathways. Moreover,
emerging sources such as marine organisms and endophytic
fungi have expanded the oncology pipeline with agents like
trabectedin and salinosporamide A. Despite their successes,
challenges such as supply limitations, complex isolation,
and suboptimal pharmacokinetics necessitate the adoption
of computational cheminformatics to accelerate virtual
screening, scaffold optimization, and drug-like property
prediction.

» Emergence of Cheminformatics and Data-Driven
Approaches
The integration of cheminformatics into oncology
research marks a paradigm shift from traditional empirical
screening toward data-driven drug discovery models.
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Cheminformatics, encompassing quantitative structure—
activity relationship (QSAR) modeling, molecular
descriptor analysis, and virtual screening, enables the
systematic evaluation of large chemical libraries for
potential anticancer activity (Cherkasov et al., 2014). By
leveraging curated datasets and computational models,
researchers can now predict the bioactivity,
pharmacokinetics, and toxicity of natural compounds
before costly and time-intensive experimental validation.

The emergence of machine learning and artificial
intelligence (Al) further amplified cheminformatics
capabilities, introducing generative algorithms capable of
proposing novel chemical entities optimized for oncogenic
targets (Walters & Murcko, 2020). These Al-driven
platforms, employing techniques such as deep generative
models and reinforcement learning, have shown promise in
navigating the vast chemical space of natural products to
identify bioactive analogs with improved drug-like
properties. For example, deep learning frameworks can
predict molecular fingerprints from limited bioactivity data,
enabling virtual hit expansion for rare cancer subtypes.
Additionally, cheminformatics tools now allow multitarget
profiling, which is crucial for addressing the
polypharmacology characteristic of many oncological
diseases. Consequently, the convergence of data science
and chemistry has positioned cheminformatics as an
indispensable engine driving the rapid, cost-effective
discovery of new oncology therapeutics sourced from
natural compounds.

» Scope and Objectives of the Review

This review systematically explores how data-driven
cheminformatics models are advancing the prediction of
bioactivity for natural compounds in oncology drug
discovery. The study covers the entire computational
workflow, beginning with data acquisition from public
bioactivity  repositories, followed by  molecular
representation techniques such as descriptors, fingerprints,
and graph-based models. It then examines machine learning
and deep learning methods used to build predictive models
capable of prioritizing promising natural compounds for
anticancer activity.

The objectives of this review are threefold. First, to
outline the current state of computational methodologies
that enable virtual screening and bioactivity prediction in
natural product libraries. Second, to evaluate case studies
where cheminformatics successfully enhanced the
identification of bioactive oncology candidates from
natural sources. Third, to critically assess the challenges in
model interpretability, data quality, and generalization
across complex cancer phenotypes, while suggesting
emerging solutions such as hybrid modeling and
explainable Al techniques. Overall, this review aims to
provide a comprehensive and technical guide for
researchers and practitioners interested in accelerating
oncology drug discovery using computational approaches
focused on natural products.

» Structure of the Paper

The paper is organized into six major sections. Section
1 provides an introduction, covering the background of
natural compounds in oncology, the emergence of
cheminformatics, and the objectives of the review. Section
2 discusses data sources and molecular representations
critical for modeling, including public databases and
molecular encoding techniques. Section 3 examines
machine learning and deep learning approaches applied to
predict the bioactivity of natural products. Section 4
presents practical applications, highlighting case studies
involving phytochemicals and marine-derived compounds.
Section 5 addresses the current challenges in data-driven
cheminformatics and reviews emerging solutions such as
explainable Al and hybrid modeling. Finally, Section 6
offers future perspectives, emphasizing new computational
strategies and the evolving role of cheminformatics in
precision oncology.

Il.  DATA SOURCES AND MOLECULAR
REPRESENTATIONS

> Public Bioactivity Databases: ChEMBL, PubChem
BioAssay, BindingDB

The foundation of data-driven cheminformatics
models lies in access to robust and well-curated bioactivity
databases. ChEMBL, PubChem BioAssay, and BindingDB
are three pivotal resources that facilitate the virtual
exploration of chemical-biological interaction landscapes
critical for oncology research. ChEMBL is a manually
curated database containing bioactivity information on over
1.9 million compounds, including data on binding,
functional assays, and ADMET properties derived
primarily from peer-reviewed publications (Gaulton et al.,
2017). For natural products in oncology, ChEMBL
provides structured annotations linking compounds to
cancer-relevant targets such as kinases, nuclear receptors,
and epigenetic modulators, thereby supporting predictive
modeling endeavors.

Similarly, PubChem BioAssay serves as an expansive
repository hosting over one million bioactivity assay
records, integrating information from high-throughput
screening (HTS) campaigns, particularly for oncology-
related targets like p53 modulators and tyrosine Kinase
inhibitors (Wang et al., 2017). PubChem’s integration with
compound structures, assay descriptions, and experimental
conditions makes it a valuable asset for constructing
training datasets aimed at machine learning applications in
virtual screening and drug repositioning.

BindingDB specifically focuses on binding affinities,
documenting over 1.2 million binding measurements across
protein-ligand complexes, with notable emphasis on
kinases, GPCRs, and oncology-relevant enzymes. By
providing kinetic parameters such as ICso, Kj, and K_d
values, BindingDB enables quantitative structure—activity
relationship (QSAR) modeling with enriched data quality
as represented in Table 1.
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Together, these databases enable the aggregation of
comprehensive datasets necessary for training supervised
learning models, feature extraction, and validating
bioactivity predictions for natural compounds in oncology.

The strategic utilization of these resources ensures that
cheminformatics pipelines are anchored in reproducible,
high-confidence biological evidence.

Table 1 Summary of Key Public Bioactivity Databases for Oncology Modeling

Database Name Focus Area Key Features Role in Oncology Modeling
ChEMBL Curated bioactivity data Compound-target bioactivities, Supports predictive modeling for
from literature sources ADMET properties, cancer- oncology pathways and virtual
relevant targets lead prioritization
PubChem High-throughput screening Assay descriptions, compound Enables large-scale dataset
BioAssay assay data structures, experimental construction for machine learning
conditions metadata in virtual screening
BindingDB Experimental binding ICso, K, and K_d values across | Provides quantitative affinity data
affinity data proteins like kinases, GPCRs, and | essential for QSAR modeling and
enzymes target specificity predictions
ChEMBL Curated bioactivity data Compound-target bioactivities, Supports predictive modeling for
from literature sources ADMET properties, cancer- oncology pathways and virtual
relevant targets lead prioritization
» Molecular Descriptors, Fingerprints, and Graph choice of molecular representation significantly influences

Representations
Accurately representing chemical structures is a

fundamental requirement for building predictive
cheminformatics models. Molecular descriptors are
numerical values derived from molecular graphs,

characterizing properties such as topology, geometry,
electronic distribution, and atom connectivity (Todeschini
& Consonni, 2009). These descriptors, which include
simple counts (e.g., molecular weight, hydrogen bond
donors) and complex indices (e.g., topological polar surface
area, Wiener index), translate intricate molecular structures
into machine-readable formats essential for supervised
learning models. In oncology-focused modeling,
descriptors sensitive to pharmacophoric features like
planarity and lipophilicity are particularly critical for
predicting bioactivity profiles.

Molecular fingerprints offer a more compact
representation, encoding the presence or absence of
substructures or chemical patterns as binary or hashed
vectors. Popular fingerprinting methods, such as Extended
Connectivity Fingerprints (ECFPs) and MACCS keys,
allow for rapid similarity searches and clustering operations
critical for virtual screening of natural product libraries.
Fingerprints also serve as input features for classical
machine learning algorithms like random forests, support
vector machines, and gradient boosting frameworks in
bioactivity prediction tasks.

Graph-based representations, enabled by
advancements in deep learning, have further revolutionized
molecular encoding. Unlike traditional descriptors or
fingerprints, graph convolutional networks (GCNSs) process
molecules directly as graphs, where atoms are nodes and
bonds are edges, learning hierarchical chemical features
automatically (Duvenaud et al., 2015). This approach
eliminates the need for hand-crafted features and has
demonstrated superior performance in modeling natural
product-derived compounds with complex fused ring
systems and nonstandard functional groups. Thus, the

the performance, interpretability,
capabilities of cheminformatics
oncological applications.

and generalization
models targeting

» Data Preprocessing and Curation Challenges

Reliable predictive modeling in cheminformatics
hinges critically on the quality and integrity of the input
data. Raw chemical databases often contain redundancies,
structural errors, and inconsistent annotations, necessitating
rigorous preprocessing and curation protocols to ensure
model robustness and generalizability (Fourches, Muratov,
& Tropsha, 2016). In oncology-focused cheminformatics
pipelines, particular care must be taken to correct
tautomeric inconsistencies, standardize protonation states,
remove salts and counterions, and verify stereochemistry.
Failure to address these artifacts can propagate noise into
machine learning models, leading to erroneous predictions
of bioactivity for natural compounds.

An essential step in preprocessing is structure
normalization,  wherein  variations in  molecular
representation, such as depiction of aromatic systems or
charge assignments, are harmonized across datasets.
Equally critical is the identification and removal of
duplicate records, which can artificially inflate model
performance metrics if inadvertently included in both
training and testing sets. Williams (2012) emphasized that
even high-profile databases like ChEMBL and PubChem
may require secondary curation to eliminate misdrawn
structures, incomplete entries, and ambiguous activity
annotations.

Beyond chemical structure validation, bioactivity data
must also be carefully filtered. Challenges such as
ambiguous assay descriptions, inconsistent endpoint
measurements (e.g., ICso vs. ECs), and varying
experimental conditions can undermine model fidelity if
not meticulously curated. Cross-referencing experimental
protocols, converting endpoint metrics into standardized
units, and flagging unreliable data points are recommended

67



best practices. Moreover, the imbalanced distribution of
active versus inactive compounds, typical in natural
product oncology datasets, necessitates strategic sampling
or augmentation techniques to mitigate model bias as

shown in Figure 1. Consequently, robust data curation is
foundational to building high-confidence cheminformatics
models capable of accurately predicting anticancer
bioactivities in complex natural product libraries.
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Fig 1 Diagram Showing Preprocessing Challenges and Curation Strategies in Oncology Cheminformatics.

Fig 1 presents a high-level outline of the key
challenges and solutions involved in data preprocessing and
curation for oncology-focused cheminformatics. At the
center is the critical role of data quality in enabling reliable
predictive modeling. The first branch highlights common
data issues, including structural inconsistencies such as
unnormalized tautomers, salts, and stereochemistry errors,
as well as problems like duplicate entries, incomplete
bioactivity records, and inconsistent assay units (e.g., ICso
vs. ECso). The second branch outlines strategic curation
responses to these issues, including structure normalization
to standardize molecular  representations, assay
harmonization to align experimental conditions, rigorous
filtering to remove unreliable data, and careful duplicate
removal to prevent data leakage across model training and
validation. Together, these curated processes ensure that
input data is clean, consistent, and suitable for high-
confidence modeling in oncology drug discovery using
natural products.

I1l.  MACHINE LEARNING AND PREDICTIVE
MODELING IN CHEMINFORMATICS

» Traditional QSAR Models and Regression Techniques

Quantitative Structure—Activity Relationship (QSAR)
modeling forms the foundational core of traditional
cheminformatics approaches for predicting the bioactivity
of chemical compounds, including natural products in
oncology. QSAR models establish mathematical
relationships between molecular descriptors and biological
activity endpoints, providing a framework to infer the
activity of untested compounds from known structural
features (Cherkasov et al., 2014). Linear models, such as
multiple linear regression (MLR) and partial least squares
(PLS), have historically dominated early QSAR

applications due to their interpretability and computational
simplicity. These methods rely on the assumption that
biological activity is a linear combination of selected
molecular descriptors, making them particularly attractive
for early-stage virtual screening.

However, real-world bioactivity data often exhibit
non-linear relationships, necessitating the use of non-linear
regression techniques such as support vector regression
(SVR) and k-nearest neighbor (k-NN) algorithms to
enhance predictive accuracy. Validation remains a critical
component of QSAR modeling, with internal methods (e.g.,
cross-validation) and external validations (e.g., testing on
independent datasets) serving as benchmarks to assess
model generalizability (Gramatica, 2007). Rigorous
validation ensures that models do not suffer from
overfitting, a common pitfall when dealing with high-
dimensional natural product datasets.

In oncology drug discovery, classical QSAR models
have been used to prioritize natural compounds targeting
kinases, DNA topoisomerases, and apoptotic regulators.
Despite their historical success, traditional QSAR
approaches face limitations when handling highly diverse,
structurally complex natural products. Nevertheless, they
remain valuable, especially when combined with modern
ensemble strategies or used as baseline models for
benchmarking more advanced machine learning
architectures. Their simplicity, ease of interpretation, and
relatively low computational demands make QSAR models
enduring tools in cheminformatics pipelines aimed at
oncology therapeutics discovery.
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» Deep Learning Architectures: Graph Neural Networks
and Autoencoders

The evolution of deep learning has introduced
powerful architectures capable of automatically learning
hierarchical features from molecular data, significantly
enhancing  bioactivity ~ prediction in  oncology
cheminformatics. Graph Neural Networks (GNNSs),
particularly Graph Convolutional Networks (GCNs), have
gained prominence for their ability to directly operate on
molecular graphs without requiring manual feature
engineering. In GCNs, molecules are treated as graphs
where atoms are nodes and bonds are edges, and the
convolutional layers iteratively aggregate information from
local atomic neighborhoods to learn task-specific
representations (Kipf & Welling, 2017). This approach is
particularly advantageous for modeling complex natural
compounds with non-canonical structures, fused ring
systems, and diverse functional groups, all of which
challenge traditional descriptor-based models.

Complementing GNNs, autoencoders serve as another
deep learning framework with profound utility in

cheminformatics. Autoencoders are neural networks
trained to reconstruct input data after compressing it into a
lower-dimensional latent space, effectively learning
compact, information-rich representations (Hinton &
Salakhutdinov, 2006). In oncology drug discovery,
autoencoders are employed for unsupervised feature
extraction from large chemical libraries, denoising noisy
molecular descriptors, and even generating novel molecular
structures through variational extensions. Their ability to
capture subtle variations in chemical space makes them
invaluable for navigating the highly diverse chemical
scaffolds typical of natural products.

The integration of GNNs and autoencoders into
cheminformatics pipelines enables end-to-end learning
workflows that bypass the limitations of handcrafted
features as showm in Figure 2. These deep learning models
excel not only in predicting compound bioactivity but also
in uncovering hidden relationships between molecular
structure and anticancer efficacy. As a result, they represent
a transformative leap forward in the application of artificial
intelligence to oncology-focused natural product discovery.
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Fig 2 A Block Diagram Showing GNN and Autoencoder Architectures for Bioactivity Prediction

Figure 2 illustrates two key deep learning architectures
used in oncology-focused cheminformatics: Graph Neural
Networks (GNNs) and Autoencoders. At the center is a
shared goal—predicting the bioactivity of natural
compounds. The first branch, GNNSs, processes molecular
structures as graphs, treating atoms as nodes and bonds as
edges, allowing the model to learn structural relationships
through message passing and graph convolution. This
enables accurate prediction of chemical behavior without
the need for predefined descriptors, particularly useful for
modeling complex natural products. The second branch,
Autoencoders, begins with molecular descriptors or
fingerprints and compresses them into a lower-dimensional

latent space before reconstructing the input. This
architecture supports unsupervised feature learning,
denoising, and compound generation. Together, these
architectures enhance predictive performance and
flexibility in cheminformatics pipelines by extracting rich,
hierarchical representations of molecular data tailored for
oncology applications.

» Multi-Task Learning and Transfer Learning in
Oncology Applications
Multi-task learning (MTL) has emerged as a powerful
strategy in cheminformatics, where multiple related
prediction tasks are learned simultaneously by a shared
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model, leading to improved generalization and efficiency.
Instead of training separate models for each oncological
target or bioactivity endpoint, MTL architectures optimize
shared representations that exploit correlations across tasks,
such as overlapping signaling pathways or structural
similarities among ligands (Ruder, 2017). For natural
compound oncology modeling, MTL frameworks enable
simultaneous  predictions across multiple cancer
biomarkers, such as kinase inhibition profiles, cytotoxicity
assays, and apoptotic activity metrics, thereby reducing the
risk of overfitting on sparse datasets typical of natural
product libraries.

Transfer learning further enhances predictive
performance, especially when available labeled data is
limited, as is often the case with rare or structurally unique
natural compounds. Transfer learning involves pretraining
a model on a large source domain and fine-tuning it on a
smaller, related target domain (Pan & Yang, 2010). In
cheminformatics, models initially trained on broad

chemical bioactivity datasets, such as ChEMBL or
PubChem assays, can be repurposed to predict bioactivities
in specialized oncology datasets with minimal additional
training. This approach significantly reduces data
requirements and computational costs while preserving
predictive accuracy.

Recent innovations combine MTL and transfer
learning to create hierarchical architectures that perform
coarse-grained screening at early layers and specialized
bioactivity predictions at deeper layers. Such hybrid models
are particularly suited for natural product oncology
research, where leveraging generalized chemical
knowledge while capturing specific biological nuances is
essential as presented in Table 2 . Together, multi-task and
transfer learning paradigms represent critical advancements
in building more versatile, efficient, and robust
cheminformatics models capable of accelerating the
discovery of new anticancer agents from nature’s chemical
repertoire.

Table 2 Multi-Task and Transfer Learning in Oncology Modeling

Approach Purpose Key Techniques Impact on Natural Product Oncology
Modeling
Multi-Task Simultaneously learn Shared neural network Improves generalization across diverse
Learning multiple related bioactivity architectures, task-specific oncogenic targets and enhances learning
(MTL) prediction tasks output heads from limited datasets
Transfer Transfer knowledge from | Pretraining on large chemical Enables accurate bioactivity prediction
Learning broad datasets to bioactivity datasets, fine- for rare targets with minimal labeled
(TL) specialized oncology tuning on rare cancer targets data
targets
Hybrid MTL- | Combine MTL and TL for Coarse-grained pretraining Boosts model adaptability, accelerates
TL Models hierarchical task learning followed by fine-tuning on lead discovery for underexplored cancer
specific oncology biomarkers pathways
Multi-Task Simultaneously learn Shared neural network Improves generalization across diverse
Learning multiple related bioactivity architectures, task-specific oncogenic targets and enhances learning
(MTL) prediction tasks output heads from limited datasets

IV. APPLICATIONS IN PREDICTING
BIOACTIVITY OF NATURAL PRODUCTS

» Case Studies on Phytochemicals and Marine-Derived
Agents

Natural products derived from terrestrial plants and
marine organisms have yielded some of the most significant
breakthroughs in  oncology drug development.
Phytochemicals such as paclitaxel from Taxus brevifolia
and vinblastine from Catharanthus roseus exemplify the
immense therapeutic potential locked within terrestrial
biodiversity (Newman & Cragg, 2016). Paclitaxel operates
through the stabilization of microtubules, arresting cancer
cell division, and remains a cornerstone treatment for
breast, ovarian, and lung cancers. Similarly, camptothecin,
isolated from Camptotheca acuminata, led to the
development of topotecan and irinotecan, critical therapies
targeting DNA topoisomerase I, an essential enzyme for
DNA replication in rapidly proliferating cancer cells.

Marine ecosystems have also proven to be invaluable
reservoirs of anticancer agents. Compounds such as

trabectedin, derived from the sea squirt Ecteinascidia
turbinata, exhibit unigue DNA minor groove binding
properties that disrupt transcription processes and tumor
cell survival (Molinski et al., 2009). Another notable
marine-derived agent, salinosporamide A, isolated from
Salinispora tropica, acts as a potent proteasome inhibitor
and has shown efficacy in multiple myeloma models. These
marine products often feature highly complex and novel
chemical scaffolds that defy synthetic mimicry, making
them irreplaceable sources for new drug discovery.

Data-driven cheminformatics models are increasingly
applied to expedite the identification and optimization of
such bioactive natural compounds. Virtual screening
campaigns now leverage predictive modeling to prioritize
phytochemicals and marine metabolites with high binding
affinities to cancer-specific targets as presented in Table 3.
Consequently, case studies in phytochemical and marine
oncology reinforce the indispensable role of natural
products while demonstrating how modern computational
techniques are revitalizing their exploration for next-
generation cancer therapeutics.
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Table 3 Key Natural Compounds from Phytochemical and Marine Sources in Oncology

Source Example Compound

Mechanism of Action

Oncological Application

Terrestrial Plants Paclitaxel (Taxus

brevifolia)

Stabilizes microtubules,
inhibits mitosis

Treatment of breast, ovarian, and
lung cancers

Terrestrial Plants Camptothecin

(Camptotheca acuminata)

Inhibits DNA topoisomerase |

Basis for topotecan and irinotecan
in solid tumor therapies

Marine Organisms | Trabectedin (Ecteinascidia

turbinata)

Binds DNA minor groove,
disrupts transcription

Approved for soft tissue sarcomas
and ovarian cancer

Marine Organisms Salinosporamide A

(Salinispora tropica)

Inhibits proteasome function

Investigated for multiple myeloma
and hematologic malignancies

» Target Specificity, Off-Target Effects, and Toxicity
Predictions

Predicting target specificity and minimizing off-target
effects are critical components of oncology drug discovery,
especially when working with structurally complex natural
products. Computational approaches, including
cheminformatics and machine learning, have become
indispensable for early-stage prediction of both desired
interactions and potential toxic liabilities. Target specificity
modeling focuses on identifying compounds that interact
selectively with oncogenic targets while avoiding
promiscuous binding to non-cancer-related proteins, a
major cause of side effects (Ekins & Williams, 2010).
Techniques such as structure-based virtual screening and
ligand-based similarity models are widely applied to rank
natural compounds based on predicted binding affinities
and selectivity indices.

Off-target profiling leverages predictive models
trained on large datasets containing known bioactivity
profiles across multiple protein families. By using
molecular descriptors and fingerprint similarity searches,
researchers can anticipate potential unintended interactions,
flagging molecules likely to cause cardiotoxicity,
hepatotoxicity, or neurological side effects. Toxicity
prediction models also integrate chemical property
thresholds (e.g., lipophilicity, molecular weight) and
machine learning classifiers trained to identify structural
alerts associated with toxicological outcomes (Cheng et al.,
2012).

In oncology, where therapeutic windows can be
narrow, early computational prediction of off-target effects
helps prioritize lead compounds that balance efficacy and
safety. Furthermore, advances in multi-target modeling
allow simultaneous evaluation of a molecule’s
polypharmacological landscape, enhancing the ability to
uncover synergistic interactions or harmful cross-activities.
Incorporating predictive toxicity and off-target analytics
into the cheminformatics workflow not only improves
success rates in downstream experimental validation but
also accelerates the translation of natural compounds into
clinically viable oncology therapeutics.

> Integration of Virtual Screening and Hit-to-Lead
Prioritization

Virtual screening (VS) represents a cornerstone in
modern cheminformatics pipelines, particularly for
oncology drug discovery using natural products. Structure-
based and ligand-based virtual screening methodologies
enable the rapid identification of potential bioactive
compounds from large chemical libraries by evaluating
their fit to specific biological targets or known active
ligands (Lionta et al., 2014). In the context of natural
products, VS allows researchers to navigate vast molecular
diversity, prioritizing compounds with favorable binding
affinity, pharmacophoric features, and drug-likeness
properties, thus reducing experimental burden.

Integration with hit-to-lead prioritization strategies is
critical to move beyond simple virtual hits toward
compounds with optimized efficacy, selectivity, and
developability.  After virtual screening, candidate
compounds are further evaluated using cheminformatics-
driven scoring functions that predict ADMET properties,
synthetic accessibility, and potential off-target effects.
Techniques such as consensus scoring, where multiple
predictive models are combined, increase the reliability of
lead selection by mitigating bias introduced by individual
algorithms (Schneider, 2010).

In natural product oncology, the hit-to-lead process
often involves iterative refinement cycles, wherein top-
ranked virtual hits undergo additional structure-activity
relationship (SAR) modeling, docking studies, and even
early-stage molecular dynamics simulations to validate
binding modes. Cheminformatics models guide medicinal
chemists in suggesting modifications to improve
bioavailability, metabolic stability, and target engagement
without compromising the structural integrity crucial to
natural product-derived compounds.

Thus, the tight integration of virtual screening with
systematic  hit-to-lead optimization accelerates the
identification of high-quality, bioactive natural compounds
poised for further preclinical development as shown in
Figure 3. This approach exemplifies how computational
modeling transforms traditional discovery workflows into
dynamic, data-driven engines for efficient oncology drug
development.
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Fig 3 Workflow Diagram for Streamlined Virtual Screening and Lead Optimization

Figure 3 illustrates a streamlined workflow integrating
virtual screening with hit-to-lead prioritization in oncology-
focused cheminformatics. At the core is the combined
process, which begins with the virtual screening phase,
where both structure-based and ligand-based techniques are
employed to evaluate large libraries of natural compounds.
This phase includes initial filtering using docking scores
and drug-likeness criteria such as ADMET properties. The
process then transitions into the hit-to-lead prioritization
phase, where selected virtual hits undergo structure-activity
relationship (SAR) analysis and lead optimization. This
step focuses on refining compound potency, selectivity, and
pharmacokinetic properties to identify the most promising
candidates for experimental validation. Together, these two
phases create a cohesive pipeline that accelerates the
discovery of effective anticancer agents from natural
product sources.

V. CHALLENGES AND EMERGING
SOLUTIONS

» Data Sparsity, Imbalanced Datasets, and Model
Generalization

Data sparsity and class imbalance present significant
challenges in cheminformatics modeling for natural
product oncology discovery. Sparsity arises due to the
limited availability of experimentally validated bioactivity
data for many natural compounds, leading to datasets with
incomplete feature-target mappings. Machine learning
models trained on sparse data often exhibit poor
generalization, overfitting to the few available active
compounds and failing to predict the bioactivity of novel
scaffolds accurately (He & Garcia, 2009).

Compounding this issue, natural product datasets are
inherently imbalanced, with a disproportionate number of
inactive or weakly active compounds relative to potent
bioactives. Standard classifiers tend to favor the majority
class, resulting in high overall accuracy but poor sensitivity
in identifying the minority (active) class — a critical failure
in oncology drug discovery where identifying rare hits is
paramount (Sun, Wong, & Kamel, 2009). Techniques such
as Synthetic Minority Over-sampling  Technique
(SMOTE), adaptive synthetic sampling (ADASYN), and
cost-sensitive learning have been developed to address
imbalance by either enriching minority class samples or
penalizing misclassifications asymmetrically during model
training.

Model generalization in the presence of sparse and
imbalanced data requires careful architectural and
methodological choices. Ensemble methods like random
forests and gradient boosting are often preferred due to their
inherent robustness to noisy or skewed data. Additionally,
regularization techniques such as dropout, weight decay,
and early stopping help prevent overfitting in deep learning
models. Data augmentation strategies, including the
generation of virtual compounds via SMILES-based
perturbations or molecular graph augmentations, further
enhance diversity and help models capture underlying
chemical-biological relationships more effectively as
presented in Table 4.

Addressing sparsity and imbalance is not merely a
preprocessing concern; it is integral to building
cheminformatics models capable of reliably predicting
novel oncology therapeutics from underexplored natural
product spaces.
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Table 4 Challenges and Solutions for Sparse and Imbalanced Oncolo

gy Datasets

Challenge Description Key Techniques to Address It Impact on Modeling
Data Sparsity Limited availability of labeled Data augmentation, transfer Reduces overfitting, improves
bioactivity data for natural learning, virtual sample generalization to unseen
compounds generation compounds
Imbalanced Dominance of inactive compounds SMOTE, cost-sensitive learning, Enhances model sensitivity to
Datasets over active ones in datasets resampling techniques minority (active) class
predictions
Model Models memorize training data Regularization methods (dropout, | Improves predictive robustness
Overfitting rather than generalize weight decay), early stopping on new natural product
scaffolds
Poor Difficulty in applying models to Ensemble methods, few-shot Expands chemical space
Generalization novel or rare chemical structures learning, graph data augmentation | coverage, boosts reliability in
oncology predictions

> Explainable Al (XAl) for Model Interpretability

The increasing complexity of machine learning
models in cheminformatics, particularly deep learning
architectures, has led to concerns regarding their
interpretability and transparency. In oncology drug
discovery from natural products, where decision-making
impacts critical therapeutic directions, black-box models
are insufficient. Explainable Al (XAl) addresses this
challenge by providing mechanisms to render machine
learning predictions understandable to domain experts
without compromising predictive performance (Gilpin et
al., 2018).

Several XAl techniques have been tailored for
cheminformatics. Feature attribution methods, such as
SHAP (SHapley Additive exPlanations) and LIME (Local
Interpretable Model-agnostic Explanations), identify which
molecular substructures or descriptors contribute most
significantly to a given bioactivity prediction. These
methods enable researchers to discern whether a model’s
reasoning aligns with known pharmacophoric features or
unexpected chemical motifs, facilitating trust and
validation as Shown in Figure 4.

Figure 4 presents a structured sketch of how
Explainable Al (XAIl) enhances interpretability in
cheminformatics models used for oncology drug discovery.
At the core is the challenge of black-box complexity in deep
learning models, particularly when high-stakes decisions
depend on model outputs. The diagram branches into two
major XAl techniques — SHAP and LIME — which
provide molecular-level insights by identifying the
contribution of specific features or substructures to
prediction outcomes. Additional branches outline the
benefits these techniques offer, such as aligning predictions
with pharmacophoric expectations, enabling domain expert
trust, and improving model validation. Finally, the strategic
impact of XAl is emphasized, showing how it facilitates
regulatory  transparency, interpretable  compound
prioritization, and more cohesive collaboration between
computational scientists and medicinal chemists. Together,
these elements demonstrate how XAl transforms opaque
machine learning models into interpretable and actionable
tools in natural product oncology research.
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» Hybrid Approaches: Mechanistic Modeling Combined
with Machine Learning

Hybrid modeling approaches that integrate
mechanistic knowledge with machine learning algorithms
represent a promising frontier in cheminformatics,
particularly for oncology-focused natural product research.
Mechanistic models encode prior biological or chemical
knowledge, such as molecular binding kinetics, cellular
signaling cascades, or pharmacokinetic principles,
providing a structured framework that complements the
data-driven flexibility of machine learning models (van der
Schaar et al., 2018).

Physics-informed neural networks (PINNSs), for
example, embed differential equations governing chemical
or biological systems directly into neural network training,
ensuring that predictions adhere to known mechanistic
constraints (Raissi, Perdikaris, & Karniadakis, 2019). In the
context of oncology drug discovery, PINNs can model
drug-target binding dynamics or simulate intracellular
pathway modulations induced by natural compounds,
enhancing the physiological realism of predictive outputs.
By incorporating domain-specific rules into the training
objective, hybrid models not only improve predictive
accuracy but also enhance interpretability and
generalization to unseen molecular scaffolds.

Another application of hybrid modeling involves
coupling machine learning-based bioactivity prediction
with mechanistic toxicity models to better anticipate
adverse effects of natural products early in the discovery
pipeline. Systems biology models describing tumor
progression or resistance mechanisms can also be
integrated with cheminformatics predictors to simulate
long-term therapeutic outcomes, guiding compound
prioritization beyond simple binding affinity metrics.

Hybrid approaches thus overcome some inherent
limitations of purely data-driven models, such as
susceptibility to overfitting or lack of biological
plausibility. They enable a deeper, mechanistically
coherent understanding of the interaction between natural
product-derived molecules and oncological targets,
ultimately facilitating more robust translation from in silico
predictions to clinical candidates.

Doshi-Velez and Kim (2017) emphasized that
interpretability should not be an afterthought but a core
design principle in model development. For models
predicting anticancer activity, integrating interpretability
constraints — such as sparsity-inducing penalties or
attention mechanisms focused on pharmacologically
relevant atoms — enhances both model usability and
regulatory compliance. Moreover, interpretable models aid
in hypothesis generation, allowing researchers to propose
new chemical modifications based on model-extracted
structure-activity relationships (SAR).

Incorporating XAl tools into the cheminformatics
pipeline transforms opaque predictive models into

collaborative tools for scientific discovery, bridging
computational analytics and medicinal chemistry expertise.
This alignment is critical for ensuring the safe, effective,
and transparent advancement of natural product-derived
oncology therapeutics.

VI. FUTURE PERSPECTIVES AND
CONCLUSION

» Advances in Few-Shot and Zero-Shot Learning for Rare
Oncology Targets

The challenge of predicting bioactivity for rare
oncology targets with limited training data has catalyzed
the adoption of few-shot and zero-shot learning techniques
in cheminformatics. Few-shot learning enables models to
generalize bioactivity predictions from just a handful of
labeled examples, dramatically reducing the dependency on
large annotated datasets. In oncology-focused natural
product discovery, where unique chemical scaffolds and
underexplored biological targets are common, few-shot
approaches empower researchers to build predictive models
even when only a small number of bioactivity
measurements are available.

Zero-shot learning extends this capability further by
enabling models to make predictions for entirely unseen
classes or targets based solely on auxiliary information,
such as target protein sequences, molecular descriptors, or
ontological relationships. In natural product research, this
allows predictive frameworks to infer interactions with
novel cancer biomarkers without the need for explicit
training examples. Embedding techniques, such as learning
shared latent spaces between compounds and targets,
facilitate zero-shot generalization by capturing underlying
patterns between chemical structure and biological
function.

Advances in meta-learning, model-agnostic meta-
learning (MAML) algorithms, and transfer learning
strategies have enhanced the feasibility of few-shot and
zero-shot learning in real-world oncology datasets. These
methods dynamically adapt model parameters to new tasks
with minimal retraining, offering a pragmatic solution to
the pervasive data scarcity problem in natural compound
oncology pipelines. Integrating these advanced learning
paradigms with traditional cheminformatics workflows
ensures a more flexible and scalable approach to identifying
promising anticancer leads from underrepresented regions
of chemical and biological space.

» Role of Cheminformatics in Precision Oncology and
Personalized Therapeutics

The integration of cheminformatics into precision
oncology initiatives is transforming how natural
compounds are evaluated and deployed for personalized
cancer therapies. Precision oncology emphasizes tailoring
therapeutic interventions based on the unique genetic,
molecular, and environmental profile of each patient.
Cheminformatics tools enable rapid screening and
prioritization of natural compounds that align with specific

74



oncogenic mutations, pathway deregulations, or tumor
microenvironment characteristics observed in individual
patients.

By leveraging predictive bioactivity models linked to
genomic and proteomic data, cheminformatics can identify
compounds most likely to modulate critical disease drivers
unique to a patient's cancer subtype. Moreover, structure-
activity relationship (SAR) models refined through patient-
specific molecular profiles allow for the customization of
compound selection, optimizing efficacy while minimizing
toxicity. In silico screening workflows can simulate the
interaction of natural products with mutated receptors or
variant enzymes, uncovering opportunities for selective
targeting that conventional screening methods might
overlook.

Cheminformatics also plays a vital role in optimizing
combination therapies, where multiple natural compounds
are selected based on their synergistic effects against
heterogeneous tumor populations. Predictive modeling of
drug-drug interactions, resistance mechanisms, and
pharmacogenomic variations further refines therapeutic
strategies, enhancing treatment durability and patient
outcomes. As molecular profiling becomes standard
practice in oncology care, cheminformatics-driven
pipelines are poised to accelerate the development of
personalized natural product-based interventions, bridging
the gap between bench discovery and individualized
clinical application.

» Final Reflections and Recommendations

The convergence of data-driven cheminformatics and
natural product oncology research is reshaping the
landscape of anticancer drug discovery. While traditional
wet-lab screening remains essential, computational
pipelines now enable more strategic and efficient
exploration of the vast chemical diversity offered by nature.
Models that accurately predict bioactivity, toxicity, and
drug-likeness properties streamline the prioritization of
natural compounds, reducing time and resource
expenditures.

However, realizing the full potential of these
approaches requires addressing critical challenges,
including data sparsity, imbalance, and model
interpretability. Investment in curated, high-quality
datasets tailored to oncology applications is essential.
Additionally, expanding the use of hybrid modeling
strategies that integrate mechanistic biological knowledge
with machine learning can enhance model robustness and
clinical relevance. Emphasizing interpretability through
explainable Al frameworks ensures that cheminformatics
models serve not merely as predictive engines but as
collaborative tools supporting scientific discovery and
therapeutic innovation.

Future efforts should focus on expanding few-shot and
zero-shot learning methodologies to enable predictions
across rare and emerging cancer targets. Moreover,
embedding cheminformatics workflows into precision

oncology frameworks will facilitate the translation of
natural product leads into personalized treatment regimens.
By embracing interdisciplinary collaboration between
computational  scientists, medicinal chemists, and
oncologists, the field can accelerate the identification of
next-generation therapeutics derived from the immense,
largely untapped reservoir of natural compounds.
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