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Abstract
This article presents a comprehensive framework for implementing real-time decision-making systems in food safety quality
assurance. By integrating Statistical Process Control (SPC), Artificial Intelligence (Al), and industrial process optimization
techniques, food processors can transform their quality assurance programs from reactive to proactive, data-driven systems.
Using Schwan's Company as a case study, we demonstrate how this integrated approach delivers significant improvements
in food safety outcomes, operational efficiency, and product quality. The framework outlined provides actionable guidance
for food manufacturers seeking to leverage advanced analytics for enhanced quality assurance.
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I INTRODUCTION

» The Paradigm Shift in Food Safety Quality Assurance
The food manufacturing industry stands at a critical
inflection point. Traditional approaches to quality
assurance characterized by end-product testing, periodic
audits, and reactive responses to deviations are
increasingly insufficient to meet modern demands for
safety, consistency, and efficiency. Forward-thinking
organizations are embracing a transformative shift toward
real-time, data-driven decision-making systems that can
predict and prevent quality issues before they occur.

e This Paradigm Shift Is Driven By Several Converging
Factors:

v Regulatory Evolution:

Regulations such as the Food Safety Modernization
Act (FSMA) have shifted emphasis from response to
prevention, requiring more sophisticated monitoring
approaches.

v Consumer Expectations:

Today's consumers demand unprecedented levels of
transparency and safety assurance, with zero tolerance for
quality or safety lapses.

v" Economic Pressures:

Intensifying competition, rising input costs, and thin
margins necessitate more efficient quality processes that
minimize waste and maximize yield.

v’ Technological Advances:

The proliferation of affordable sensors, edge
computing, Al algorithms, and cloud infrastructure has
made sophisticated real-time analytics accessible to food
manufacturers of all sizes.

» The Critical Components of Modern Food Safety
Systems

e Modern Food Safety Quality Assurance Systems Must
Effectively  Integrate  Three Distinct  But
Complementary Disciplines:
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v’ Statistical Process Control (SPC):

Provides the mathematical foundation for
understanding process variations, establishing control
limits, and identifying meaningful deviations from
acceptable parameters.

v' Artificial Intelligence (Al):

Enables pattern recognition, anomaly detection,
predictive analytics, and continuous learning capabilities
that far exceed human analytical capacity.

v" Industrial Process Optimization:

Translates analytical insights into practical process
adjustments that maximize quality, safety, and efficiency
within operational constraints.

Statistical
ocess Control

Integrated Framework for Data-Driven Food Safety Quality Assurance
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A visual showing the integration of the three key
components (SPC, Al, Process Optimization) as
overlapping circles or connected elements, with key
capabilities listed in each section and shared benefits in the
overlapping areas.

The convergence of these disciplines creates a
powerful framework for real-time decision-making that
fundamentally transforms how food manufacturers
approach quality assurance.

» Current State and Challenges in Implementation

Despite Clear Potential Benefits, Many Food
Manufacturers Struggle With Implementing
Comprehensive Data-Driven Quality Systems. Common
Challenges Include:

e Data Silos:
Quality data, production data, and equipment data
often exist in separate systems with limited integration.

Fig 1 Integrated Framework for Data Driven Food Safety Quality Assurance.

o Analytical Expertise Gap:
Many quality teams lack the statistical and data
science expertise required for advanced analytics.

e Real-Time Processing Limitations:

Converting data to actionable insights quickly
enough to enable immediate interventions.
e Human Factors:

Resistance to technology-driven decision-making
among traditionally-trained quality personnel.

e Validation Challenges:
Demonstrating the reliability and accuracy of Al-
based systems to regulatory authorities.

» Scope and Objectives of This Article

This Article Presents a Comprehensive Framework
for Implementing Real-Time Decision-Making Systems
That Overcome These Challenges. Specifically, We Aim
to:

e Detail the integration points between SPC, Al, and
process optimization in food manufacturing
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o Outline the technical architecture required for real-time
analytics

o Present a methodological approach to implementation,
from data acquisition to automated decision-making

e Demonstrate real-world success through a detailed case
study of Schwan's Company's implementation

e Provide practical guidance for food manufacturers at
various stages of analytical maturity

1. STATISTICAL PROCESS CONTROL
FOUNDATIONS

» SPC Principles for Food Safety Parameters

Statistical ~ Process  Control ~ Provides the
Mathematical Foundation for Understanding Process
Variation and Distinguishing  Between  Normal
Fluctuations and Meaningful Deviations. in Food Safety
Applications, SPC Principles Must Be Adapted to Account
for:

e Critical Control Points (Ccps):
Parameters identified through HACCP analysis as
essential for ensuring food safety

e Operational Prerequisite Programs (Oprps):
Supporting systems that maintain the environment for
food safety

o Quality Control Points (Qcps):
Parameters that, while not safety-critical, impact
product quality and consistency

» For Each Monitored Parameter, SPC Establishes:

e Control Limits:
The boundaries of normal process variation (typically
+30 from the mean)

e Warning Limits:
Early indicators of potential process drift (typically
+26 from the mean

e Process Capability Indices:
Measurements of how well the process can meet
specifications (Cp, Cpk)

The statistical rigor of SPC ensures that interventions
are triggered by genuine concerns rather than normal
process variation, reducing false alarms while maintaining
sensitivity to true issues.

» Advanced Control Chart Applications for Food
Processing
Traditional Shewhart Control Charts Are Often
Insufficient for Food Processing Applications, Which
Frequently Exhibit Special Characteristics:

e Multivariate Control Charts

Food safety often depends on the relationship
between multiple parameters. For example, pathogen
growth is influenced by the interaction between

temperature, pH, water activity, and time. Multivariate
control charts such as:

v Hotelling's T2 Charts:
Monitor the relationship between multiple variables
simultaneously

v' Multivariate EWMA Charts:
Track small shifts in the relationship between
parameters over time

v' Principal Component Analysis (PCA) Charts:
Reduce dimensionality while preserving critical
relationships

These advanced charts detect complex process shifts
that would be missed by monitoring individual parameters
in isolation.

e Time-Weighted Control Charts

Many food safety parameters exhibit gradual drift or
have memory effects where historical values influence
current safety status:

v Exponentially Weighted Moving Average (EWMA)
Charts:
Assign greater weight to recent measurements while
retaining information from previous observations

v" Cumulative Sum (CUSUM) Charts:
Detect small, persistent shifts by accumulating
deviations from target values

v" Moving Average Charts:
Smooth short-term fluctuations to reveal underlying
trends

These time-weighted approaches are particularly
valuable for tracking parameters like temperature abuse or
microbial growth, where cumulative effects are more
important than instantaneous values.

¢ Non-Normal Distribution Adaptations
Food safety data frequently follows non-normal
distributions:

v Microbial Counts:
Often follow Poisson or negative binomial
distributions

v Time-to-Failure Data:
Typically follows Weibull or lognormal distributions

v' Attribute Data:
Follows binomial or multinomial distributions

e Specialized Control Charts and Transformations can
Accommodate These Distributions:

v’ Probability-Based Charts:
Use cumulative distribution functions rather than
standard deviations
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v' Transformed Charts:
Apply mathematical transformations (e.g., Box-Cox)
to normalize data

v" Distribution-Free Charts:
Use non-parametric methods that don't assume any
particular distribution

» Real-Time Sampling Considerations

Traditional SPC implementations rely on periodic
sampling, which creates vulnerability windows between
sampling events. Real-time systems require different
approaches:

e Continuous Monitoring:
For parameters that can be measured in-line
(temperature, pressure, flow rates, conductivity)

e Rapid Testing Technologies:
For parameters requiring laboratory analysis (ATP
bioluminescence, rapid PCR, immunoassay methods)

e Proxy Measurements:
Using easily measured parameters as indicators for
difficult-to-measure critical factors

e Dynamic Sampling Plans:
Adjusting sampling frequency based on risk factors
and process stability

The integration of continuous monitoring with
appropriate statistical models enables truly real-time
process control while maintaining statistical validity.

1. ARTIFICIAL INTELLIGENCE
INTEGRATION

» Machine Learning Models for Food Safety
Applications
Modern Al approaches dramatically enhance
traditional SPC capabilities through sophisticated pattern
recognition and predictive modeling:

o Supervised Learning for Known Hazards

When historical data includes labeled examples of
safety issues, supervised learning models can be trained to
recognize precursors to these events:

v Random Forest Models:

Excellent for capturing complex, non-linear
relationships between multiple process parameters and
safety outcomes

v Support Vector Machines:
Effective at defining decision boundaries between
safe and unsafe operating conditions

v Gradient Boosting Machines:
Powerful  for predicting rare events like
contamination incidents

v' Deep Neural Networks:
Capable of modeling extremely complex
relationships when sufficient training data exists.

These models excel at predicting established risks
like pathogen growth, foreign material contamination, or
allergen cross-contact based on patterns in process data.

e Unsupervised Learning for Anomaly Detection

Many quality issues manifest as unusual patterns
without prior examples. Unsupervised learning techniques
can identify these anomalies:

v" Isolation Forests:
Efficient at detecting outliers in high-dimensional
process data

v Autoencoders:
Neural networks that identify anomalies by
comparing actual values to the network's reconstruction

v" Clustering Algorithms:
Group similar process states to identify unusual
operating conditions

v One-Class SVMs:
Define the boundary of normal operation and flag
deviations

These methods excel at detecting emerging or novel
quality issues that haven't been previously encountered,
providing an additional safety net beyond traditional
monitoring.

¢ Reinforcement Learning for Process Optimization
Advanced Al systems can learn optimal control
strategies through interaction with the process:

v Q-Learning Algorithms:
Learn optimal action sequences by maximizing
cumulative rewards

v Policy Gradient Methods:
Learn control policies directly from process
feedback

v" Model-Based RL:
Build internal models of process dynamics to
simulate and optimize control strategies

These approaches enable systems to continuously
refine control strategies based on observed outcomes,
creating self-improving quality assurance systems.

» Deep Learning for Vision-Based Inspection

Modern food manufacturing increasingly relies on
vision systems for quality inspection. Deep learning has
revolutionized these systems:

e Convolutional Neural Networks (CNNs):
Detect visual defects, foreign materials, and quality
issues with accuracy exceeding human inspectors
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e Object Detection Networks:
Locate and classify multiple quality issues in a single
image

e Semantic Segmentation:

Precisely define the boundaries of defects or
contamination
e Transfer Learning:

Adapt pre-trained networks to specific food products
with limited training data

These vision systems provide continuous, non-
destructive monitoring of product appearance, packaging
integrity, and visible contamination at production speeds
far exceeding human capacity.

» Natural Language Processing for Documentation
Analysis
Quality assurance generates extensive documentation
that contains valuable insights but is challenging to
analyze systematically. NLP techniques enable:

e Automated HACCP Review:
Extract and analyze critical control points from
documentation

e Complaint Analysis:
Identify emerging quality issues from customer
feedback

e Audit Finding Classification:
Categorize and prioritize audit findings automatically

e Supplier Documentation Assessment:
Evaluate supplier food safety documentation for
compliance and completeness

These capabilities transform unstructured text data
into structured insights that can be incorporated into
comprehensive quality systems.

» Explainable Al for Food Safety Applications

Regulatory  requirements and internal  trust
necessitate transparency in Al-based quality systems.
Explainable Al approaches include:

e LIME (Local
Explanations):
Explains individual predictions by approximating the
complex model locally

Interpretable Model-agnostic

e SHAP (SHapley Additive exPlanations):
Allocates feature importance based on game theory
principles

e Attention Mechanisms:
Highlight which inputs most influenced the model's
decision

¢ Rule Extraction:
Convert complex models into human-readable rule
sets

These techniques ensure that Al remains a transparent
partner in quality decision-making rather than a
mysterious "black box," critical for regulatory acceptance
and operator trust.

(AVA INDUSTRIAL PROCESS OPTIMIZATION

» Real-Time Process Adjustment Mechanisms

Insights from SPC and Al must be translated into
concrete process adjustments to realize value. Effective
systems include:

e Closed-Loop Control Systems
For parameters with direct control mechanisms:

v" PID Controllers:
Proportional-Integral-Derivative  controllers  that
adjust process parameters to maintain target values

v Model Predictive Control (MPC):
Controllers that anticipate future process behavior
based on mathematical models

v" Adaptive Control Systems:
Controllers that adjust their parameters based on
observed process responses

These systems automatically implement minor
adjustments to maintain quality parameters within optimal
ranges.

¢ Decision Support Systems
For complex decisions requiring human judgment:

v" Alert Prioritization:
Ranking quality issues by risk and urgency

v Root Cause Analysis Support:
Suggesting likely causes based on data patterns

v" Recommended Action Protocols:
Providing operators with data-driven intervention
recommendations

v" Simulation Tools:
Allowing operators to preview the likely impact of
potential interventions

These systems augment human decision-making with
data-driven insights while keeping humans "in the loop"
for complex judgments.

e Automated Workflow Triggers
For standardized responses to well-defined
conditions:

v" Hold/Release Protocols:

Automatically quarantining product when parameters
exceed thresholds
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v" Additional Testing Triggers:
Initiating enhanced sampling when warning
indicators appear

v Maintenance Dispatching:

Scheduling immediate maintenance when equipment
performance indicates potential failure
v Cleaning Cycle Initiation:

Triggering sanitization procedures based on
microbial indicators

These automated workflows ensure consistent
responses to quality signals while minimizing delay
between detection and intervention.

» Multi-Objective Optimization for Quality, Safety and
Efficiency
Food manufacturers must balance multiple
competing objectives. Multi-objective  optimization
techniques allow for:

o Pareto Efficiency Analysis:
Identifying solutions where no objective can be
improved without sacrificing another

¢ Weighted Objective Functions:
Balancing different goals according to organizational
priorities

e Constraint-Based Optimization:
Finding the best quality outcomes within operational
limitations

e Dynamic Priority Adjustment:
Shifting emphasis between objectives based on
current conditions

These approaches enable manufacturers to maximize
quality and safety while maintaining production efficiency
and cost control.

» Digital Twin Integration for Process Simulation
Digital twin’s virtual replicas of physical production
systems enable:

e Predictive Simulation:
Testing the likely impact of process adjustments
before implementation

e Scenario Analysis:
Evaluating the quality impact of various operating
conditions

e Training Environments:
Preparing operators for quality event response
without risking actual product

e Sensitivity Analysis:
Identifying which process parameters have the
greatest quality impact

By creating a safe environment for experimentation,
digital twins accelerate process optimization while
reducing risk.

» Human-Machine Collaboration Models

Effective  quality  systems  leverage  the
complementary strengths of human experts and Al
systems:

e Tiered Decision Authority:

Clearly defining which decisions are automated,
which require confirmation, and which need human
judgment

e Expertise Augmentation:
Providing human experts with Al-enhanced insights
to support complex decisions

e Continuous Learning Loops:
Capturing human decisions to improve Al
recommendations over time

e Intuition Validation:
Giving experts tools to quickly test their intuitive
judgments against data

This collaborative approach combines human
experience and judgment with Al's analytical power and
consistency for superior quality outcomes.

TECHNICAL ARCHITECTURE FOR REAL-
TIME SYSTEMS

» Data Acquisition Infrastructure
The foundation of real-time decision-making is a
robust data acquisition system:

e Sensor Networks and I1oT Integration
Modern food plants employ diverse sensor
technologies:

v" In-line Sensors:
Continuous monitoring of process parameters
(temperature, pressure, flow, pH)

v’ At-line Testing:
Rapid analysis stations at critical process points

v Environmental Monitoring:
Sensors tracking facility conditions (air quality,
humidity, pressure differentials)

v Equipment Status Monitoring:
Sensors tracking equipment performance parameters

e These Sensors Must Be Integrated Through Industrial
Internet of Things (liot) Platforms That Provide:

v" Standardized Protocols:

OPC-UA, MQTT, or similar standards for device
communication
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v Edge Computing:
Pre-processing capabilities at the sensor level to
reduce data volume

v" Robust Networking:
Redundant communication paths to ensure data
continuity

v’ Security Measures:
Protection against unauthorized access or tampering

e Laboratory Integration Systems
Traditional laboratory testing remains essential but
must be integrated into real-time systems:

v’ Laboratory Information Management Systems (LIMS):
Centralizing test results from multiple methods

v Automated Test Equipment Interfaces:
Direct data transfer from analytical instruments

v Mobile Testing Applications:
Enabling in-plant testing with immediate data upload

v’ Sample Tracking Systems:
Linking test results to specific process conditions and
batches

e Manufacturing Execution System Connectivity
Process control data must be contextualized with
production information:

v Batch Records Integration:
Linking quality data to specific production runs

v Recipe Management Systems:
Providing product specifications for comparison

v Equipment Utilization Data:
Tracking equipment state during quality events

v Production Planning Information:
Contextualizing quality data with production targets
and constraints

» Data Processing and Analytics Pipeline
Raw data must be transformed into actionable
insights through a sophisticated processing pipeline:

o Real-Time Data Streaming Architecture
Processing high-volume, high-velocity data requires:

v’ Stream Processing Frameworks:
Technologies like Apache Kafka, Apache Flink, or
AWS Kinesis

v Complex Event Processing:
Identifying significant patterns in real-time data
streams

v Time-Series Databases:
Specialized storage optimized for chronological
process data

v In-Memory Computing:
Rapid computation without disk 1/0O bottlenecks

e Edge Computing for Latency-Critical Applications
Some quality decisions cannot tolerate cloud
processing delays:

v’ Edge Analytics Nodes:
Distributed processing capability at the production
line level

v' Local Decision Algorithms:
Simplified models deployed at the edge for
immediate response

v' Hierarchical Processing:
Distributing analytical workloads between edge, fog,
and cloud resources

v Asynchronous Learning:
Updating edge models based on more comprehensive
cloud analysis

e Cloud Infrastructure for Advanced Analytics
Complex analytical workloads benefit from cloud
resources:

v" Scalable Computing Resources:
Elastic capacity for intensive processing tasks

v Specialized Hardware Acceleration:
GPUs and TPUs for deep learning applications

v" Managed Services:
Pre-configured environments for common analytical
workloads

v Global Data Integration:
Consolidating quality data across multiple production
facilities

> Visualization and Interface Design
Insights must be presented effectively to enable
human understanding and action:

e Real-Time Dashboarding
Operational dashboards should provide:

v" Role-Based Views:
Information tailored to different stakeholders
(operators, quality personnel, management)

v' Alert Visualization:
Clear indication of quality issues requiring attention
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v Trend Displays:
Contextualizing current conditions within historical
patterns

Food Safety Quality Dashboard

Temperature Monitoring

Recent Alerts
I Temperalure deviation in Ice Cream Line: 2.3°C above target 14:32

' Preventive maintenance completed on Pizza Line Freezer

I Viscosity deviation detected in Pizza sauce - Within limits

stasLEMicrobial Risk Asseéasment

v' Predictive Indicators:
Forward-looking metrics showing emerging quality
risks

S Sehwan's/

Low rRiffroduction Line Status

Pizza Line
Ice Cream Line

Meal Prep Line

Fig 1 Food safety quality dashboard

A mockup of a quality control dashboard showing
multiple parameters being monitored in real-time, with
color-coded alerts, trend lines, and predictive indicators

o Mobile Integration
Modern quality systems extend beyond control
rooms:

v Mobile Alerts:
ushing critical notifications to appropriate personnel

v Remote Monitoring:
Enabling oversight from anywhere in the facility

v" In-Field Data Collection:
upporting quality checks during facility rounds

v Augmented Reality Overlays:
Providing in-context quality information on
equipment

e Executive Information Systems
Leadership requires different views focused on:

v KPI Aggregation:
Summarizing quality metrics across product lines
and facilities

v Exception Reporting:
Highlighting significant quality events and trends

v Compliance Dashboards:
Tracking regulatory performance metrics

v Predictive Risk Maps:
Visualizing emerging quality concerns across the
organization

» System Integration and Security Architecture
Data-driven quality systems must be both integrated
and secure:

e Enterprise System Integration
Quality data gains value through integration with:

v Enterprise Resource Planning (ERP):
Connecting quality to inventory, purchasing, and
financials

v Customer Relationship Management (CRM):
Linking quality data to customer feedback

v Supplier Management Systems:

Correlating incoming material quality with finished
product performance
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v Product Lifecycle Management (PLM):
Incorporating quality insights into  product
development

e Cybersecurity for Food Safety Systems
As quality systems become digitized, security
becomes a food safety concern:

v" Segmented Networks:

Isolating critical control systems from general IT
infrastructure
v Access Control Systems:

Limiting system manipulation to authorized
personnel

v Comprehensive Logging:
Maintaining audit trails of all system interactions

v Vulnerability Management:
Regular assessment and patching of security
weaknesses

v" Incident Response Planning:
Protocols for addressing potential security breaches

VI. CASE STUDY: SCHWAN'S COMPANY
IMPLEMENTATION

» Company Background and Initial Challenges

Schwan's Company, a leading manufacturer of frozen
foods in the United States, faced challenges typical in the
food industry:

o Diverse Product Portfolio:
Producing everything from frozen pizza to ice cream,
each with distinct quality parameters and risk profiles

e Multiple Production Facilities:
Operating seven manufacturing plants with varying
levels of automation and instrumentation

e Complex Supply Chain:
Managing hundreds of raw material suppliers with
inconsistent quality documentation

e Legacy Quality Systems:
Relying primarily on periodic testing and manual
inspection procedures

e Data Fragmentation:
Quality information scattered across paper records,
spreadsheets, and disconnected databases

The company recognized that these challenges
limited their ability to make real-time quality decisions,
creating unnecessary risks and inefficiencies.

> Strategic Approach and Implementation Methodology
Schwan's adopted a systematic approach to
developing their real-time quality decision system:

o Initial Assessment and Roadmap Development
The company began with a comprehensive
assessment:

v Quality Risk Mapping:
Prioritizing products and processes by safety risk

v’ Data Availability Analysis:
Identifying existing data sources and gaps

v Technical Infrastructure Evaluation:
Assessing current systems and required upgrades

v’ Organizational Readiness Assessment:
Evaluating team capabilities and training needs

This  assessment  informed a  three-year
implementation roadmap with clearly defined phases.

¢ Pilot Implementation: Pizza Production Line

Rather than attempting enterprise-wide deployment
immediately, Schwan's selected a high-volume pizza
production line for initial implementation:

v" Critical Parameter Identification:
Identifying 27 key quality parameters for real-time
monitoring

v Sensor Infrastructure Deployment:
Installing additional sensors for continuous
monitoring

v Data Integration Hub Creation:
Developing a centralized platform for aggregating
quality data

v" Initial Analytical Model Development:
Creating baseline SPC models and simple predictive
algorithms

The pilot phase lasted six months and provided
valuable learning experiences while demonstrating the
potential of the approach.

e Scale-Up and Capability Expansion
Building on pilot success, Schwan's expanded the
system:

v Facility-by-Facility Rollout:
Extending the platform to additional production
facilities

v Analytical Model Enhancement:
Developing more sophisticated Al capabilities

v’ Integration with Enterprise Systems:
Connecting quality data with ERP, LIMS, and MES
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v Advanced Visualization Implementation:
Deploying comprehensive dashboards across the

organization

» Technical Implementation Details

e Data Acquisition System

Schwan's
acquisition strategy:

Table 1 Data Acquisition System

implemented a

Data Source Type

Parameters Monitored

Collection Method

Sampling Frequency

In-line Sensors

Temperature, moisture, weight,

Automated collection

Continuous (1-5 second

dimensions via OPC-UA intervals)
Vision Systems Foreign material, visual defects, Automated image Every product unit
packaging integrity processing

Laboratory Testing

Microbial counts, allergen presence,
chemical composition

LIMS integration

According to sampling
plan (2-24 hours)

Environmental
Monitoring

Air quality, surface ATP, hygienic zoning

status

Wireless sensor
network

15-60 minute intervals

Equipment Status

Runtime, vibration, amperage,
performance metrics

Equipment
connectivity modules

Continuous (1-15 second
intervals)

This comprehensive data collection created a digital
representation of the entire production process.

e Analytical Models Deployed
Schwan's implemented several analytical models:

Table 2 Analytical Models Deployed

multi-layered data

Model Type Application Technology Used Performance Metrics
Multivariate SPC Process parameter Hotelling's T2 with dynamic 78% reduction in false alarms
monitoring control limits
Random Forest Foreign material risk Ensemble of 120 decision trees 92% prediction accuracy
prediction
CNN-based Vision Packaging defect Custom-trained ResNet 96.7% detection accuracy
System detection architecture

LSTM Network Time-series prediction

for quality drift

Recurrent neural network with 3
hidden layers

83% accuracy for 30-minute
prediction window

Bayesian Network Root cause analysis

Probabilistic graphical model

76% accuracy in identifying
primary causes

These models were deployed in a hybrid architecture
with time-critical models running at the edge and more
complex models in the cloud.

o Decision Support Implementation
The system translated analytical
actionable decisions through:

insights into

v' Five-Level Alert Classification:
Categorizing quality signals by severity and
confidence

v" Decision Trees for Operators:
Step-by-step guidance for responding to quality events

v" Automated Corrective Actions:
Pre-programmed process adjustments for well-
understood deviations

v" Collaborative Decision Interfaces:
Tools for quality teams to evaluate and respond to
complex situations

v’ Learning Feedback Loop:

Mechanisms to capture intervention outcomes for
system improvement.
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Key Performance Indicators: Before and After Implementation

1C0%
E 75%
@
= 7.1%
& mncrease
=
£
§ 25%
o

0% .
Contamina:ion Detectixﬁ Unplanned First-Time
Incidencs Time E Downtime Quality
Before Implementation (202'0) - After Implementation (2023)
Fig 3 Key Performance Indicators.

A flowchart showing how the system classifies e Phased Authority Transition:

quality events and guides response, from detection through
analysis to recommended actions.

» Organizational Change Management
Technical implementation was accompanied by
comprehensive organizational change management:

e Cross-Functional Design Team:
Including representatives from quality, operations,
IT, and engineering

e Tiered Training Program:
Role-specific training from basic operation to

Gradually increasing system decision authority as
confidence grew

e Quality Culture Evolution:
Shifting from “inspection mentality” to "prevention
mentality”

e Performance Metric Realignment:
Updating KPIs to incentivize proactive quality
management

» Results and Impact

After full implementation across all facilities,

advanced analytics

e [Food Safety and Quality Outcomes

Table 3 Food Safety and Quality Outcomes

Schwan's documented significant improvements:

Metric Before Implementation | After Implementation | Improvement

Product Holds Due to Quality Issues 127 per year 34 per year 73% reduction
Consumer Complaints (safety-related) 4.2 per million units 0.9 per million units 79% reduction
Mean Time to Detect Quality Deviations 27 minutes 4 minutes 85% reduction
Food Safety Near-Misses 43 per year 12 per year 72% reduction
External Audit Non-conformances 18 per year 5 per year 72% reduction

Operational Efficiency Improvements

Table 4 Operational Efficiency Improvements

Metric Before Implementation After Implementation Improvement

Quality Hold Time 22,340 hours per year 6,120 hours per year 73% reduction

Lab Testing Volume 27,500 tests per year 18,700 tests per year 32% reduction
Quality Staff Time on Data Entry 35% 8% 77% reduction
First-Time-Right Production 91.3% 97.8% 7.1% increase
Overall Equipment Effectiveness 67% 78% 16.4% increase
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e Financial Impact
The system delivered substantial financial benefits:

$3.7 million annual reduction in waste and rework
$2.2 million annual savings in laboratory testing costs
$1.8 million annual reduction in customer claims and
returns

v $5.3 million one-time impact from avoiding a potential
recall situation detected by predictive analytics

AN

With a total investment of approximately $8.2
million, the system achieved full ROI within 22 months.

VII. IMPLEMENTATION METHODOLOGY

» Readiness Assessment and Planning
Organizations considering real-time quality decision
systems should begin with thorough assessment:

e Data Maturity Evaluation
Evaluate the organization's current data capabilities:

v’ Data Availability:
What quality parameters are currently measured and
recorded?

v’ Data Accessibility:
How readily can data be extracted from current
systems?

v Data Quality:
How reliable, complete, and accurate is existing
data?

v Data Integration:
To what extent are different data sources connected?

This assessment identifies foundation strengths and
critical gaps requiring attention.

o Risk-Based Prioritization
Not all processes and products require the same level
of real-time monitoring:

v" HACCP-Based Assessment:
Prioritizing critical control points and high-risk
products

v Compliance Impact Analysis:
Focusing on areas with significant regulatory
implications

v Economic Opportunity Mapping:
Identifying processes where quality improvements
yield greatest returns

v Technical Feasibility Evaluation:
Considering where monitoring is practically
implementable

This prioritization ensures resources are directed to
areas of greatest impact.

e Phased Implementation Planning
Develop a stage-wise implementation approach:

v' Pilot Phase:
Limited-scope implementation to validate approach
and build expertise

v Scaling Phase:
Extending successful elements to additional process
areas

v Enhancement Phase:
Adding more sophisticated analytical capabilities

v' Integration Phase:
Connecting with broader enterprise systems

This phased approach manages risk while building on
successive successes.

» Technology Selection and Architecture Design

e Sensor and Data Acquisition Technology Selection
Choose appropriate monitoring technologies based
on:

v’ Parameter Criticality:
More robust and redundant solutions for safety-
critical parameters

v" Measurement Challenges:
Different technologies for difficult-to-measure
parameters

v Environmental Conditions:
Sensors suitable for food processing environments
(washdown, temperature extremes)

v Economic Constraints:

Balancing comprehensive monitoring with cost
considerations
¢ Data Platform Architecture Decisions

Key architectural decisions include:

v’ Centralized vs. Distributed Processing:
Balancing local responsiveness with enterprise-wide
analytics

v Cloud vs. On-Premises:
Considering data security, latency requirements, and
infrastructure capabilities

v’ Batch vs. Stream Processing:
Based on time-sensitivity of quality decisions

v' Build vs. Buy Decisions:
Evaluating commercial solutions against custom
development

¢ Integration Strategy Development
Plan for connecting with existing systems:
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v API and Interface Standards:
Defining how systems will communicate

v Master Data Management:
Ensuring  consistent  product, supplier, and
specification information

v' Authentication and Authorization:
Controlling who can access and modify quality data

v’ Legacy System Integration:
Approaches for incorporating existing quality
systems

» Model Development and Validation

e Analytical Model Selection Criteria
Choose appropriate models based on:

v' Decision Time Requirements:
Simpler models for immediate decisions, more
complex models for strategic insights

v’ Data Characteristics:
Model types suited to available data volume and

quality

v' Explainability Needs:
More transparent models where decision justification
is critical

v" Validation Possibilities:
Models that can be thoroughly tested before
deployment

o Validation Methodology
Ensure model reliability through rigorous validation:

v" Historical Data Validation:
Testing against known past quality events

v’ Parallel Deployment:
Running new systems alongside traditional methods

v Challenge Testing:
Deliberately introducing process variations to test
detection capabilities

v Ongoing Performance Monitoring:
Tracking model accuracy and adjusting as needed

o Regulatory Compliance Considerations
Ensure analytical approaches meet regulatory
requirements:

v Documentation Standards:
Creating appropriate records of model development
and validation

v Compliance with Electronic Record Requirements:
Meeting 21 CFR Part 11 or similar standards

v Audit Trail Implementation:
Tracking system decisions and human interactions

v' Validation Protocol Development:
Formal approach to proving system reliability

» Organizational Implementation

¢ Roles and Responsibilities Redesign
Quality organizations must evolve to effectively
utilize data-driven systems:

v’ Data Stewardship Roles:
Assigning responsibility for data quality and
governance

v Analytical Expertise Development:
Building or acquiring data science capabilities

v' Decision Authority Frameworks:
Clearly defining human vs. system decision
boundaries

v" Cross-Functional Collaboration Models:
Creating effective interaction between quality,
operations, and IT

e Training and Capability Development
Prepare the organization through:

v' Tiered Training Programs:
Different depth for different roles

v Hands-On Simulation:
Practical experience in a safe environment

v Continuous Learning Systems:
Ongoing education as capabilities evolve

v" Knowledge Management:
Capturing and sharing insights and best practices

e Performance Measurement Redesign
Align metrics and incentives with the new approach:

v’ Leading vs. Lagging Indicators:
Shifting emphasis to predictive metrics

v" Process vs. Outcome Measures:
Focusing on process stability over inspection results

v Continuous Improvement Metrics:
Measuring the organization's learning and adaptation

v" Balanced Scorecards:

Ensuring quality, efficiency, and innovation are
appropriately weighted
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VIIL. FUTURE DIRECTIONS

» Emerging Technologies
Several emerging technologies promise to further
enhance real-time quality decision-making:

e Advanced Sensing Technologies

v Hyperspectral Imaging:
Non-destructive detection of chemical composition
and contamination

v Electronic Noses:
Detecting volatile compounds associated with
quality issues

v' Distributed Acoustic Sensing:
Monitoring equipment and process sounds for
anomaly detection

v' Edible Sensors:
Monitoring product conditions throughout the supply
chain

¢ Al and Computational Advances

v Federated Learning:
Sharing model improvements across facilities while
preserving data privacy

v" Neuromorphic Computing:
Energy-efficient Al processing at the sensor level

v" Quantum Machine Learning:
Tackling previously unsolvable quality optimization
problems

v Generative Models:
Creating synthetic data to improve rare-event
prediction

¢ Integration Technologies

v" Blockchain for Quality Traceability:
Immutable records of quality parameters throughout
the supply chain

v' Digital Thread Technology:
Connecting design, production, and quality data
across product lifecycle

v API-First Platforms:
Flexible integration frameworks that adapt to
evolving technology ecosystems

v" Knowledge Graphs:
Connecting disparate quality data points to reveal
hidden relationships and insights

> Regulatory Evolution and Compliance Considerations
As data-driven quality systems mature, regulatory
approaches are evolving in response:

e Regulatory Acceptance of Al in Food Safety

v' FDA's New Era of Smarter Food Safety:
Blueprint for technology-enabled food safety
modernization

v GFSI Benchmarking Requirements:
Evolving standards for advanced analytical systems

v Validation Protocols for Predictive Models:
Emerging frameworks for demonstrating Al
reliability

v’ Alternative Verification Methods:
Regulatory  pathways for novel monitoring
approaches

e Data Integrity Requirements

v Electronic Record Standards Evolution:
Updates to 21 CFR Part 11 and international
equivalents

v' Data Lifecycle Management:
Requirements for maintaining quality data
throughout its useful life

v" Audit Trail Sophistication:
More comprehensive requirements for change
tracking and justification

v’ System Security Validation:
Increasing focus on cybersecurity as a food safety
concern

e International Harmonization Efforts

v Codex Alimentarius Guidelines:
International standards for digital food safety systems

v Global Data Exchange Formats:
Standardized approaches to sharing quality
information

v Cross-Border Compliance Frameworks:
Mechanisms for meeting multiple jurisdictional
requirements

v/ Mutual Recognition Initiatives:
Reciprocal acceptance of validated digital systems
across borders

» Economic Models and Business Case Development
The investment in data-driven quality systems

requires robust economic justification:

¢ Total Cost of Ownership Models

v' Infrastructure Investment Analysis:

Calculating the complete costs of technical
implementation
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v Operational Cost Impacts:
Quantifying changes in ongoing quality management
expenses

v Maintenance and Evolution Costs:
Planning for system updates and capability expansion

v" Skill Development Investment:
Counting for workforce training and capability
building

e Return on Investment Calculation

v Risk Reduction Valuation:
Quantifying the financial benefit of preventing
quality incidents

v’ Efficiency Improvement Analysis:
Calculating labor and material savings from
optimized processes

v Brand Protection Value:
Assessing the long-term market value of enhanced
quality reputation

v Regulatory Compliance Economics:
Quantifying reduced compliance costs and penalties

¢ Novel Funding and Implementation Models

v' Quality-as-a-Service:
Subscription-based access to advanced quality
analytics

v’ Risk-Sharing Partnerships:
Vendor arrangements where payment depends on
quality improvements

v Consortium Approaches:
Industry collaborations to develop shared quality
platforms

v" Insurance-Linked Implementation:
Premium reductions tied to advanced quality system
adoption

» Ethical and Social Considerations
As quality decisions become increasingly automated,
ethical dimensions require attention:

e Transparency and Explainability

v Consumer Right-to-Know:
Balancing proprietary systems with appropriate
transparency

v' Decision Attribution:
Clearly establishing responsibility for quality
decisions

v Model Transparency Requirements:
Creating appropriate visibility into decision
algorithms

v Documentation Standards:
Establishing what must be recorded and disclosed

e Workforce Transformation

v' Job Evolution vs. Displacement:
Shifting quality roles from inspection to system
management

v" Skill Development Pathways:
Creating transition opportunities for existing
workforce

v" Human-Al Collaboration Models:
Defining optimal division of responsibilities

v' Labor Relations Considerations:
Addressing workforce concerns about technological
change

o Digital Divide Implications

v’ Technology Accessibility:
Ensuring systems are accessible to small and medium
enterprises

v Global Implementation Disparities:
Addressing uneven adoption across different regions

v" Knowledge Transfer Requirements:
Facilitating technology diffusion throughout the
industry

v’ Capacity Building Initiatives:
Industry and regulatory efforts to expand capabilities

IX. CONCLUSION

» Key Principles for Successful Implementation

The integration of Statistical Process Control,
Artificial Intelligence, and Industrial Process Optimization
creates powerful systems for real-time quality decision-
making in food manufacturing. Based on implementations
like Schwan's Company's successful transformation,
several key principles emerge:

e Data Foundation First:

Successful ~ systems  begin  with  reliable,
comprehensive data acquisition before advancing to
sophisticated analytics.

e Risk-Based Prioritization:

Resources should be directed to monitoring and
controlling the parameters with greatest impact on food
safety and quality.
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e Incremental Implementation:

Phased approaches with pilot projects and systematic
expansion yield higher success rates than "big bang"
implementations.

e Human-Centered Design:

Technology should augment human capabilities
rather than simply replace them, leveraging the
complementary strengths of both.

e Continuous Evolution:

Effective systems incorporate feedback mechanisms
that enable ongoing improvement in both technical
capabilities and organizational usage.

» Integration of Technical and Organizational Elements

Perhaps the most critical learning from successful
implementations is that technical solutions alone are
insufficient. Real transformation requires the integration
of:

e Technical Systems:
Sensors, networks, databases, and analytical
platforms

e Process Methodologies:
Quality management approaches, decision protocols,
and intervention procedures

e Organizational Structures:
Roles, responsibilities, and  cross-functional
relationships

e Cultural Elements:
Mindsets, skills, and organizational priorities

Organizations that neglect any of these dimensions
typically fail to realize the full potential of data-driven
quality systems.

» The Future of Food Safety Quality Assurance
As we look toward the future, several trends appear
certain:

o Prediction Will Replace Detection:

Systems will increasingly identify potential quality
issues before they occur rather than detecting them after
they happen.

o Integration Will Span Supply Chains:
Quality data will flow seamlessly across
organizational boundaries from farm to consumer.

o Decision Autonomy Will Increase:

Systems will handle routine quality decisions
independently while escalating complex situations for
human judgment.

e Regulatory Approaches Will Adapt:
Regulatory frameworks will evolve to accommodate
and eventually require sophisticated quality analytics.

e Consumer Transparency Will Expand:
Consumers will gain unprecedented visibility into the
quality assurance systems protecting their food.

The food manufacturers who embrace these trends
building comprehensive, data-driven quality decision
systems will not only protect public health more
effectively but also gain significant competitive
advantages in efficiency, consumer trust, and market
responsiveness.

By integrating Statistical Process Control, Artificial
Intelligence, and Industrial Process Optimization in the
manner demonstrated by Schwan's Company and outlined
in this framework, food manufacturers can transform
quality assurance from a necessary cost center into a
strategic asset driving both safety and business
performance.
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