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Abstract 

The exponential growth of Internet of Things (IoT) devices has created unprecedented challenges in cybersecurity, particularly 

in maintaining privacy while ensuring effective threat detection across distributed networks. This article presents a 

comprehensive analysis of federated learning (FL) approaches for privacy-preserving cyber threat detection in IoT 

environments. Through extensive review of current literature and methodologies, we examine how federated learning 

paradigms address the dual challenge of maintaining data privacy while enabling collaborative threat intelligence across 

distributed IoT networks. Our analysis reveals that federated learning frameworks can achieve up to 94% accuracy in intrusion 

detection while preserving data locality and privacy constraints. The findings demonstrate significant potential for scalable, 

privacy-aware cybersecurity solutions in modern IoT ecosystems. 
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I. INTRODUCTION 
 

The Internet of Things (IoT) has fundamentally 

transformed the digital landscape, with billions of 

interconnected devices generating vast amounts of data 

across diverse domains including healthcare, 

transportation, manufacturing, and smart cities. This 

unprecedented connectivity, while offering immense 

opportunities for innovation and efficiency, has 

simultaneously introduced complex cybersecurity 

challenges that traditional centralized security approaches 

struggle to address effectively. 

 

Contemporary IoT networks are characterized by 

their distributed nature, heterogeneous device capabilities, 

and stringent privacy requirements. The conventional 

approach of collecting all data in centralized repositories 

for analysis presents significant privacy concerns, 

regulatory compliance issues, and scalability limitations 

(Beltrán et al., 2023). Moreover, the resource-constrained 

nature of many IoT devices makes it impractical to 

implement sophisticated security mechanisms locally. 

 

Federated learning emerges as a promising paradigm 

that addresses these challenges by enabling collaborative 

machine learning across distributed devices without 

requiring centralized data aggregation. In the context of 

cybersecurity, federated learning allows IoT devices to 

collaboratively train threat detection models while keeping 

sensitive data locally, thus preserving privacy and 

reducing communication overhead (Belarbi et al., 2023). 

 

Recent research has demonstrated the efficacy of 

federated learning in various IoT security applications, 

from intrusion detection to malware identification. Azeez 

et al. (2024) showed that federated learning approaches 

could achieve comparable performance to centralized 

methods while significantly reducing privacy risks. 

Similarly, Elaziz et al. (2025) demonstrated that advanced 

federated learning frameworks incorporating transformer 

architectures and nature-inspired optimization could 

enhance both accuracy and efficiency in IoT threat 

detection. 
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II. LITERATURE REVIEW AND 

BACKGROUND 

 
 Evolution of IoT Cybersecurity Challenges 

The cybersecurity landscape in IoT networks has 

evolved significantly as these systems have grown in 

complexity and scale. Traditional security approaches, 

primarily designed for conventional computing 

environments, often prove inadequate when applied to IoT 

contexts due to fundamental differences in architecture, 

resource constraints, and operational requirements. 

 

IoT networks are particularly vulnerable to various 

types of cyber-attacks, including Distributed Denial of 

Service (DDoS) attacks, which have become increasingly 

sophisticated and difficult to detect using conventional 

methods. Cvitic et al. (2021) demonstrated that boosting-

based approaches could significantly improve DDoS 

detection rates in IoT systems, achieving accuracy rates of 

up to 96.8% through ensemble learning techniques. 

However, these approaches typically require centralized 

data processing, which raises privacy concerns and 

scalability issues. 

 

The emergence of edge computing has introduced 

new dimensions to IoT security. Gaurav et al. (2022) 

explored edge computing-based DDoS attack detection for 

intelligent transportation systems, highlighting the 

benefits of processing security analytics closer to data 

sources. This distributed processing paradigm aligns 

naturally with federated learning principles, where 

computation occurs at the network edge while maintaining 

coordinated learning objectives. 

 

 Federated Learning Fundamentals in IoT Context 

Federated learning represents a paradigm shift from 

traditional centralized machine learning approaches. 

Instead of moving data to algorithms, federated learning 

moves algorithms to data, enabling collaborative learning 

while preserving data locality and privacy. This approach 

is particularly relevant for IoT environments where data 

sensitivity, bandwidth limitations, and privacy regulations 

create significant barriers to centralized data processing. 

 

The fundamental architecture of federated learning in 

IoT networks involves multiple participating devices 

(clients) that locally train machine learning models on 

their private data. These local model updates are then 

aggregated by a central coordinator to create a global 

model, which is subsequently distributed back to 

participants. This iterative process continues until 

convergence is achieved or predetermined stopping 

criteria are met. 

 

Figure 1: Conceptual architecture of federated 

learning framework for privacy-preserving cyber threat 

detection in distributed IoT networks, showing local 

model training, secure aggregation, and global model 

distribution phases. 

 

 
Fig 1 Federated Learning Architecture for IoT Cybersecurity 
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Beltrán et al. (2023) provide a comprehensive survey 

of decentralized federated learning, identifying key trends 

and challenges in implementing federated approaches 

across various domains. Their analysis reveals that 

federated learning frameworks must address several 

critical challenges including communication efficiency, 

system heterogeneity, statistical heterogeneity, and 

privacy preservation. 

 

 Privacy-Preserving Mechanisms in Federated IoT 
Security 

Privacy preservation in federated learning for IoT 

security involves multiple layers of protection, from 

cryptographic techniques to differential privacy 

mechanisms. The challenge lies in maintaining the utility 

of threat detection models while ensuring that individual 

device data remains private and secure. 

 

Recent advances in privacy-preserving federated 

learning have introduced sophisticated techniques such as 

secure multi-party computation, homomorphic encryption, 

and advanced differential privacy mechanisms. Gelenbe et 

al. (2024) developed DISFIDA (Distributed Self-

Supervised Federated Intrusion Detection Algorithm), 

which incorporates online learning capabilities 

specifically designed for health IoT and Internet of 

Vehicles applications. Their approach demonstrates how 

self-supervised learning can enhance privacy preservation 

while maintaining detection effectiveness. 

 

III. METHODOLOGY AND FRAMEWORK 

DESIGN 

 
 Federated Learning Architecture for IoT Threat 

Detection 
The design of effective federated learning systems 

for IoT cybersecurity requires careful consideration of 

network topology, communication protocols, and 

aggregation mechanisms. Our analysis of current literature 

reveals several key architectural patterns that have proven 

effective in real-world deployments. 

 

The typical federated learning architecture for IoT 

threat detection consists of three primary components: 

 Local Learning Modules:  

Deployed on individual IoT devices or edge nodes, 

these modules are responsible for local data processing 

and model training. They must be lightweight enough to 

operate within the resource constraints of IoT devices 

while maintaining sufficient complexity to capture 

relevant threat patterns. 

 

 Secure Aggregation Layer:  
This component handles the collection and 

aggregation of local model updates while ensuring privacy 

preservation. Advanced cryptographic techniques and 

secure multi-party computation protocols are often 

employed at this layer. 

 

 Global Coordination Service:  

Responsible for orchestrating the federated learning 

process, managing participant enrollment, and distributing 

updated global models back to participating devices. 

 

 Threat Detection Models and Algorithms 
The effectiveness of federated learning for IoT 

cybersecurity heavily depends on the underlying machine 

learning models and algorithms employed. Recent 

research has explored various approaches, from traditional 

machine learning techniques to advanced deep learning 

architectures. 

 

Rey et al. (2022) investigated federated learning 

applications for malware detection in IoT devices, 

demonstrating that convolutional neural networks could be 

effectively trained in a federated manner while 

maintaining detection accuracy comparable to centralized 

approaches. Their experiments showed that federated 

learning could achieve 92.3% accuracy in malware 

classification tasks. 

 

Figure 2: Comparative analysis of detection 

accuracy, privacy preservation, and communication 

overhead between federated and centralized learning 

approaches in IoT threat detection scenarios. 
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Fig 2 Performance Comparison: Federated vs Centralized Learning  

 

Advanced architectures incorporating transformer 

models have shown particular promise. Elaziz et al. (2025) 

developed a federated learning framework utilizing Tab 

Transformer architecture combined with nature-inspired 

hyperparameter optimization, achieving superior 

performance in intrusion detection tasks. Their approach 

demonstrated that sophisticated attention mechanisms 

could be effectively distributed across federated learning 

environments. 

 

 Privacy-Preserving Techniques and Implementation 
The implementation of privacy-preserving 

mechanisms in federated IoT security systems requires a 

multi-layered approach that addresses various privacy 

threats including model inversion attacks, membership 

inference attacks, and gradient leakage. 

 

 

 

Table 1 Privacy-Preserving Techniques in Federated IoT Security 

Technique Description Privacy 

Level 

Computational 

Overhead 

Communication 

Cost 

Differential Privacy Adds calibrated noise to model 

updates 

High Medium Low 

Homomorphic 

Encryption 

Enables computation on encrypted 

data 

Very High High High 

Secure Aggregation Cryptographic protocols for secure 

averaging 

High Medium Medium 

Local Differential 

Privacy 

Privacy-preserving data collection Very High Low Low 

Gradient 

Compression 

Reduces communication while 

preserving privacy 

Medium Low Very Low 

Source: Compiled from Rahmati (2025), Belarbi et al. (2023), and Gelenbe et al. (2024) 

 

Differential privacy has emerged as one of the most 

practical approaches for privacy preservation in federated 

learning environments. By adding carefully calibrated 
noise to model parameters or gradients, differential 

privacy provides mathematical guarantees about the 

privacy of individual data points while maintaining model 

utility. 

Rahmati and Pagano (2025) developed a 

comprehensive federated learning-driven cybersecurity 

framework that incorporates multiple privacy-preserving 
techniques. Their framework demonstrates how privacy 

budgets can be effectively managed across multiple 

training rounds while maintaining real-time threat 

detection capabilities. 
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IV. EXPERIMENTAL ANALYSIS AND 

RESULTS 

 
 Performance Evaluation Metrics 

The evaluation of federated learning systems for IoT 

cybersecurity requires comprehensive metrics that capture 

both security effectiveness and privacy preservation 

characteristics. Our analysis considers multiple 

dimensions of performance including detection accuracy, 

false positive rates, communication efficiency, and 

privacy guarantees. 

 

 

 Detection Performance Metrics: 

 
 Accuracy: Overall correctness of threat classification 

 Precision: Ratio of true positive detections to total 

positive predictions 

 Recall: Ratio of true positive detections to total actual 

threats 

 F1-Score: Harmonic mean of precision and recall 

 False Positive Rate: Proportion of benign activities 

incorrectly classified as threats 

 

 Privacy and Efficiency Metrics: 
 

 Privacy Budget Consumption: Measure of privacy cost 

over training iterations 

 Communication Rounds: Number of federation rounds 

required for convergence 

 Bandwidth Utilization: Total communication overhead 

per training epoch 

 Convergence Time: Time required to achieve stable 

model performance 

 

 Comparative Analysis of Federated Learning 

Approaches 
Recent studies have demonstrated varying levels of 

effectiveness for different federated learning approaches 

in IoT cybersecurity contexts. Our analysis synthesizes 

results from multiple research efforts to provide a 

comprehensive view of current capabilities. 

 

Table 2 Performance Comparison of Federated Learning Approaches for IoT Threat Detection 

Study Architecture Dataset Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Privacy 

Mechanism 

Azeez et al. 

(2024) 

Deep Neural 

Network 

NSL-KDD 92.4 91.8 93.1 92.4 Differential 

Privacy 

Belarbi et al. 

(2023) 

CNN + RNN IoT-23 94.2 93.7 94.8 94.2 Secure 

Aggregation 

Elaziz et al. 

(2025) 

Tab Transformer UNSW-

NB15 

95.1 94.6 95.7 95.1 Local DP + 

Encryption 

Rey et al. 

(2022) 

CNN Custom 

IoT 

92.3 91.9 92.7 92.3 Gradient 

Perturbation 

Gelenbe et al. 

(2024) 

Self-Supervised Health IoT 93.8 93.2 94.4 93.8 Distributed 

Privacy 

Source: Compiled from referenced studies with normalized metrics for comparison 

 

The results demonstrate that modern federated 

learning approaches can achieve detection accuracies 

exceeding 90% while maintaining strong privacy 

guarantees. Notably, the Tab Transformer approach by 

Elaziz et al. (2025) achieved the highest overall 

performance, suggesting that attention-based architectures 

may be particularly well-suited for federated IoT security 

applications. 

 

Figure 3: Convergence analysis showing how 

detection accuracy evolves across federated learning 

training rounds for different architectural approaches in 

IoT threat detection scenarios. 
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Fig 3 Evolution of Detection Accuracy Across Training Rounds 

 

 Communication Efficiency and Scalability Analysis 
One of the primary advantages of federated learning 

in IoT environments is the potential for reduced 

communication overhead compared to centralized 

approaches. However, the actual communication 

efficiency depends heavily on the specific implementation 

and optimization techniques employed. 

Recent research has explored various approaches to 

improve communication efficiency in federated IoT 

security systems. Gradient compression techniques, model 

pruning, and selective parameter sharing have all shown 

promise in reducing bandwidth requirements while 

maintaining detection performance. 

 

 

Table 3 Communication Efficiency Analysis of Federated Learning Implementations 

Optimization 

Technique 

Bandwidth Reduction 

(%) 

Accuracy Impact 

(%) 

Convergence 

Speed 

Implementation 

Complexity 

Gradient Compression 75-85 -1.2 to -2.1 Faster Medium 

Model Pruning 60-70 -0.8 to -1.5 Similar High 

Selective Sharing 40-55 -0.3 to -0.7 Similar Low 

Quantization 50-65 -1.0 to -1.8 Faster Medium 

Sparsification 70-80 -1.5 to -2.3 Slower High 

Source: Analysis based on multiple studies including Yazdinejad et al. (2022a, 2022b) 

 

V. ADVANCED APPLICATIONS AND USE 

CASES 

 

 Industrial IoT Security 
The application of federated learning to Industrial 

Internet of Things (IIoT) security presents unique 

challenges and opportunities. Industrial environments 

often involve critical infrastructure where security 
breaches can have severe consequences, making privacy-

preserving threat detection particularly important. 

 

Yazdinejad et al. (2022a) developed an ensemble 

deep learning model specifically designed for cyber threat 

hunting in industrial IoT environments. Their approach 

combines multiple learning algorithms in a federated 

framework to improve detection accuracy while 

maintaining the confidentiality of industrial process data. 

The model achieved 96.2% accuracy in detecting 

advanced persistent threats in manufacturing 
environments. 

 

The industrial context introduces additional 

complexity due to the heterogeneous nature of industrial 
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devices, ranging from simple sensors to complex 

programmable logic controllers. Yazdinejad et al. (2022b) 

addressed this challenge by developing accurate threat 

hunting mechanisms for IIoT edge devices, demonstrating 

that federated learning could be effectively adapted to 

resource-constrained industrial environments. 

Figure 4: Hierarchical federated learning architecture 

for industrial IoT networks, showing multi-tier 

aggregation and specialized threat detection modules for 

different industrial segments. 

 

 
Fig 4 Hierarchical Federated Learning in Industrial IoT Networks 

 

 Healthcare IoT Applications 

Healthcare IoT networks present particularly 

stringent privacy requirements due to regulatory 

frameworks such as HIPAA and GDPR. The sensitive 

nature of health data makes federated learning an attractive 

approach for maintaining privacy while enabling 

collaborative threat detection across healthcare 

institutions. 

 

Mamta et al. (2021) explored blockchain-assisted 

secure fine-grained searchable encryption for cloud-based 

healthcare cyber-physical systems. Their work 

demonstrates how federated learning can be combined 

with blockchain technology to create robust, privacy-

preserving security frameworks for healthcare IoT 

environments. 

 

The DISFIDA algorithm developed by Gelenbe et al. 

(2024) specifically targets healthcare IoT and Internet of 

Vehicles applications. This distributed self-supervised 

federated intrusion detection algorithm incorporates 

online learning capabilities, enabling real-time adaptation 

to emerging threats while maintaining strict privacy 

guarantees required in healthcare contexts. 

 

 Smart City and Transportation Systems 

Smart city infrastructure and intelligent 

transportation systems represent another critical 

application domain for federated learning-based IoT 

security. These systems often span multiple administrative 

domains and involve various stakeholders, making privacy 

preservation particularly challenging. 

 

Gaurav et al. (2022) investigated edge computing-

based DDoS attack detection for intelligent transportation 

systems, highlighting the importance of distributed 

processing in transportation security. Their work 

demonstrates how federated learning principles can be 

applied to create scalable security solutions for 

transportation infrastructure. 

 

The complexity of smart city environments requires 

sophisticated approaches to threat detection that can 

handle the diverse types of devices and communication 
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protocols involved. Yang et al. (2020) explored deep 

reinforcement learning-based intelligent reflecting surface 

systems for secure wireless communications, providing 

insights into how advanced machine learning techniques 

can be applied in federated IoT security contexts. 

 

VI. CHALLENGES AND LIMITATIONS 

 
 Technical Challenges 

Despite the significant potential of federated learning 

for IoT cybersecurity, several technical challenges remain 

that must be addressed for widespread adoption: 

 

 System Heterogeneity:  

IoT networks typically consist of devices with vastly 

different computational capabilities, memory constraints, 

and network connectivity. This heterogeneity makes it 

challenging to design federated learning algorithms that 

can effectively utilize all available resources while 

maintaining consistent performance across diverse device 

types. 

 

 Non-IID Data Distribution:  
In real-world IoT deployments, data is often non-

independently and identically distributed (non-IID) across 

devices. This statistical heterogeneity can significantly 

impact the convergence and performance of federated 

learning algorithms, requiring specialized techniques to 

address these imbalances. 

 

 Communication Constraints:  
While federated learning reduces the need for raw 

data transmission, it still requires regular communication 

of model parameters or gradients. In IoT environments 

with limited bandwidth or intermittent connectivity, this 

communication overhead can become a significant 

bottleneck. 

 

 Security and Privacy Limitations 
Although federated learning inherently provides 

privacy benefits compared to centralized approaches, it is 

not immune to various privacy and security attacks: 

 

 Model Inversion Attacks:  

Sophisticated adversaries may be able to reconstruct 

private data from shared model parameters or gradients, 

potentially compromise the privacy guarantees that 

federated learning aims to provide. 

 

 Poisoning Attacks:  

Malicious participants can deliberately corrupt the 

federated learning process by submitting false model 

updates, potentially degrading the overall performance of 

the threat detection system. 

 

 Inference Attacks:  

Even without access to raw data, attackers may be 

able to infer sensitive information about individual devices 

or users based on their participation patterns or model 

contributions. 

 

Figure 5: Comprehensive overview of security 

threats and attack vectors specific to federated learning 

implementations in IoT cybersecurity contexts, including 

mitigation strategies and defense mechanisms. 

 

 
Fig 5 Security Threat Landscape in Federated IoT Learning 
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 Regulatory and Compliance Challenges 

The deployment of federated learning systems in IoT 

environments must navigate complex regulatory 

landscapes that vary across jurisdictions and application 

domains. Data protection regulations such as GDPR, 

CCPA, and sector-specific requirements in healthcare and 

finance create additional constraints on system design and 

operation. 

 

Mishra et al. (2022) addressed some of these 

challenges in their work on DDoS attack detection using 

computational intelligence approaches. They 

demonstrated that ensemble methods could be designed to 

meet regulatory requirements while maintaining detection 

effectiveness, but noted that compliance verification 

remains a significant challenge in federated environments. 

 

VII. FUTURE DIRECTIONS AND RESEARCH 

OPPORTUNITIES 

 

 Emerging Technologies and Integration 

The future of federated learning for IoT 

cybersecurity lies in the integration of emerging 

technologies and the development of more sophisticated 

approaches to address current limitations: 

 

 Blockchain Integration:  

The combination of federated learning with 

blockchain technology offers potential solutions for 

ensuring the integrity and auditability of federated learning 

processes. Yazdinejad et al. (2022a) demonstrated the 

potential of blockchain-based federated learning for cyber 

threat hunting in IIoT networks, showing how distributed 

ledger technology can enhance trust and verification in 

federated environments. 

 

 Edge AI and 5G Networks:  
The deployment of 5G networks and advances in 

edge AI capabilities create new opportunities for more 

efficient and responsive federated learning systems. The 

increased bandwidth and reduced latency of 5G networks 

can support more frequent model updates and enable real-

time threat response capabilities. 

 

 Quantum-Resistant Security:  

As quantum computing advances threaten current 

cryptographic approaches, research into quantum-resistant 

security mechanisms for federated learning becomes 

increasingly important. This includes developing new 

privacy-preserving techniques that remain secure against 

quantum attacks. 

 

 Advanced Machine Learning Techniques 
The application of advanced machine learning 

techniques to federated IoT security continues to evolve: 

 

 Self-Supervised Learning:  
As demonstrated by Gelenbe et al. (2024), self-

supervised learning approaches can reduce the dependence 

on labeled data while maintaining privacy guarantees. This 

is particularly important in IoT environments where 

obtaining labeled security data can be challenging and 

expensive. 

 

 Few-Shot and Zero-Shot Learning:  

These techniques could enable federated learning 

systems to rapidly adapt to new types of threats with 

minimal training data, addressing one of the key 

challenges in cybersecurity where new attack vectors 

emerge constantly. 

 

 Continual Learning:  
The development of continual learning approaches 

that can adapt to changing threat landscapes without 

forgetting previously learned patterns represents a 

significant opportunity for improving the long-term 

effectiveness of federated IoT security systems. 

 

 Standardization and Interoperability 
The future success of federated learning in IoT 

cybersecurity will depend heavily on the development of 

industry standards and interoperability frameworks: 

 

 Protocol Standardization:  

The development of standardized communication 

protocols and APIs for federated learning will be crucial 

for enabling interoperability between different IoT 

platforms and vendors. 

 

 Privacy Standards:  

Clear standards for privacy preservation in federated 

learning, including definitions of privacy levels and 

verification mechanisms, will be essential for regulatory 

compliance and user trust. 

 

 Evaluation Frameworks:  

Standardized evaluation frameworks that can assess 

both security effectiveness and privacy preservation across 

different federated learning implementations will help 

drive continued improvement in the field. 

 

VIII. CONCLUSIONS 

 

This comprehensive analysis of federated learning 

for privacy-preserving cyber threat detection in distributed 

IoT networks reveals both significant promise and ongoing 

challenges. The research demonstrates that federated 

learning approaches can achieve detection accuracies 

exceeding 90% while maintaining strong privacy 

guarantees, making them well-suited for modern IoT 

security requirements. 

 

 Key Findings from Our Analysis Include: 
The effectiveness of federated learning in IoT 

cybersecurity has been demonstrated across multiple 

application domains, from industrial systems to healthcare 

networks. Advanced architectures incorporating 

transformer models and attention mechanisms show 

particular promise, with some approaches achieving 

accuracy rates above 95%. The privacy preservation 

capabilities of federated learning address critical concerns 
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in IoT deployments, where data sensitivity and regulatory 

compliance are paramount. 

 

However, significant challenges remain. System 

heterogeneity, non-IID data distribution, and 

communication constraints continue to limit the practical 

deployment of federated learning systems. Security 

vulnerabilities specific to federated learning, including 

model inversion and poisoning attacks, require continued 

research and development of robust defense mechanisms. 

 

The integration of emerging technologies such as 

blockchain, 5G networks, and quantum-resistant 

cryptography offers promising avenues for addressing 

current limitations. The development of industry standards 

and interoperability frameworks will be crucial for 

enabling widespread adoption of federated learning 

approaches in IoT cybersecurity. 

 

Looking forward, the field requires continued 

research into advanced machine learning techniques, 

improved privacy preservation mechanisms, and more 

efficient communication protocols. The development of 

standardized evaluation frameworks and regulatory 

compliance guidelines will be essential for building trust 

and enabling practical deployment of these systems. 

 

The potential of federated learning for privacy-

preserving cyber threat detection in IoT networks is 

substantial, but realizing this potential will require 

sustained research effort and collaboration between 

academia, industry, and regulatory bodies. As IoT 

networks continue to grow in complexity and importance, 

federated learning approaches will likely play an 

increasingly critical role in maintaining security while 

preserving privacy in our interconnected world. 
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