
International Journal of Scientific Research and Modern Technology (IJSRMT) ijsrmt.com

Volume 2, Issue 5, 2023

DOI: https://doi.org/10.38124/ijsrmt.v2i5.843

Kesavan, E. (2023). Codeless Automation Versus Scripting: A Case Study on Selenium-Based JavaScript

Testing Tools. International Journal of Scientific Research and Modern Technology, 2(5),

7–14. https://doi.org/10.38124/ijsrmt.v2i5.843

7

Codeless Automation Versus Scripting: A Case

Study on Selenium-Based JavaScript Testing Tools

Elavarasi Kesavan1

1 Full Stack QA Architect, Cognizant

Publication Date: 2023/05/26

Abstract
Navigating the somewhat murky waters of software testing reveals codeless automation and scripted approaches as key areas.

Each is worthy of close study. Codeless automation? It's gaining traction, known for its potential to open up test development.

It lets folks who might not be coding whizzes still pitch in on quality assurance. It’s really about leveraging the rise of tools-

-think Selenium, tweaked for JavaScript. That’s a unique area we want to dig into. This case study looks hard at both codeless

automation and traditional scripting, focusing on how they work with Selenium-based JavaScript testing. We’ve set up a solid

method to break down how each one performs. We're looking at efficiency, flexibility, and how well they get the job done.

Recent studies suggest that codeless solutions often boost user engagement and speed up testing quite a bit (Banerjee A et al.,

p. 1-94)(M. Bures et al.). But, scripted automation? Still super important for those who need very custom, flexible testing. It

lets them fine-tune things that codeless tools might struggle with (R. R. Vinayakumar et al.)(Solanki F et al.). So, big question:

How do organizations decide between these two?What we found offers some clear differences in how well they perform--

think execution time, how easy they are to maintain, and how well they adapt to changes. Early results show that codeless

tools can test faster, but they can hit a wall with really complex tests or intricate interactions between components (S. Sharma

et al.)(Brzezicki M). Scripting, on the other hand, can be tough to learn at first. But it often wins out in places with frequent

code changes and complex setups (S. Sharma et al.)(Solanki F et al., p. 57390-57390). We also looked at test coverage and

defect detection rates. These are key to gauging not just the tools but also the overall quality of the software. Data shows that

scripted tests tend to find more defects during execution, suggesting codeless tools often miss things in larger scenarios

(Solanki F et al.)(A. Mesbah A. van Deursen et al., p. 537-556). So, organizations need to really think about their specific

needs when picking a testing strategy.There are big implications for training too. Codeless tools are easy to use, encouraging

more people to get involved. This promotes teamwork and shared responsibility (Singh BJ et al., p. 119230-119230) (Ko et

al.). Scripted testing? It means committing to training, which can boost skills but takes time (M. Utting et al.)(A. Pretschner

et al.). Organizations need to balance the quick wins of codeless automation against the long-term benefits of a skilled

workforce. This research dives into these trade-offs, offering metrics and recommendations to guide best practices in software

testing.In the end, this case study isn’t just about theory; it's about giving practitioners useful insights. By showing the good

and bad of both codeless automation and scripted testing with Selenium-based JavaScript tools, we want to help decision-

makers in software testing. As software evolves, these insights will be key to creating effective testing strategies that fit

organizational goals and tech advances (Paul et al.) (Maspupah et al.) (Handayani L et al.)(Bizovi et al.). This mix of methods

can lead to new solutions that tackle the complex needs of today's software development.

I. INTRODUCTION

The debate around automation in software testing,

particularly codeless versus traditional scripting, continues

among experts. As companies push for faster releases and

better software, balancing ease of use with strong technical

performance is key. Codeless automation tries to make

testing accessible to everyone, letting non-programmers

create automated tests without needing extensive coding

knowledge (Banerjee A et al., p. 1-94). Frameworks like

Selenium with JavaScript help bridge the gap for those

with strong domain knowledge but less technical skill.

This can help alleviate bottlenecks common in code-heavy

environments that require lots of specialized training (M.

Bures et al.).A strong argument for codeless automation is

its potential to speed up test creation. Users can often use

visual interfaces and drag-and-drop features to build test

scenarios intuitively (R. R. Vinayakumar et al.). Some

studies suggest this can significantly cut down the time

needed to set up testing suites, freeing up teams to focus

on tasks like exploratory testing and improving user

experience (Solanki F et al.). However, some critics argue

https://www.ijsrmt.com/
https://doi.org/10.38124/ijsrmt.v2i5.843
https://doi.org/10.38124/ijsrmt.v2i5.843

8

that codeless systems, while easy to use, can lack the

flexibility needed for more complex testing strategies that

scripted automation allows (S. Sharma et al.). For instance,

codeless tools might be great for automating simple tests,

but they might struggle with complex business logic or

unexpected user interactions, situations where experienced

testers can use custom scripts to handle more effectively

(Brzezicki M).Additionally, a key consideration when

looking at codeless automation versus scripting is how

easy they are to maintain long-term. Scripted tests might

break due to changes in the application or user interfaces,

needing code updates. Codeless solutions, while designed

to be adaptable, can also cause problems when users

encounter unexpected issues, often needing a deeper dive

into the scripting environment to fix things (S. Sharma et

al.). This raises the question of which testing approach

leads to more reliable quality assurance in fast-changing

development environments.Nevertheless, the

incorporation of AI and ML into both codeless and

scripted frameworks is revolutionizing software testing

(Solanki F et al., p. 57390-57390). AI-driven tools aim to

improve test generation by using past data to suggest test

cases, even where codeless or scripted techniques alone

might not be enough. This shift means organizations

should also consider hybrid solutions that combine the

strengths of both approaches while minimizing their

weaknesses (Solanki F et al.). The merging of codeless and

scripted methods highlights the ongoing evolution of test

automation, pointing to a future where tools adapt to

individual team needs based on skills, project

requirements, and context.Considering the ongoing

discussion on the pros and cons of codeless automation

versus scripting, this study aims to evaluate these methods

through a case study focusing on Selenium-based

JavaScript tools. By analyzing both codeless and script-

driven testing, the study seeks to clarify performance

metrics such as test creation speed, reliability, and

maintenance needs. Furthermore, insights from real-world

team experiences will offer a better understanding of how

each approach contributes to software quality (A. Mesbah

A. van Deursen et al., p. 537-556). The ultimate goal is to

provide practitioners with data-driven insights to help

them choose automation tools wisely, making informed

decisions that match their operational needs and quality

goals (Singh BJ et al., p. 119230-119230). Each selected

metric will contribute not only to the evaluation of the

current capabilities of these tools but also to the broader

story of automation in an era defined by agility and

innovation (Ko et al.). As such, the tension between

codeless automation and scripting forms a crucial part of

any comprehensive approach to software testing, driving

teams toward solutions that not only streamline their

processes but also enhance the reliability and performance

of their software products as they navigate an increasingly

complex digital landscape (M. Utting et al.).

II. LITERATURE REVIEW

The world of software testing automation is seeing

quite the evolution, particularly if you compare codeless

automation with those traditional scripting methods.

(Banerjee A et al., p. 1-94) makes the point that codeless

testing tools came about because there was a need to make

testing more accessible, letting people without a super

technical background get involved. Research really

highlights this shift, showing how codeless options can

speed up how quickly you get things done and make it

easier to learn, compared to the usual automation setups

(M. Bures et al.). Plus, (R. R. Vinayakumar et al.) says that

codeless tools are a big deal in agile environments, where

you need to test things fast without bogging down

development with complicated scripting. A thorough look

by (Solanki F et al.) goes over the good and bad of

different testing routes, noting that while codeless

solutions are easier to get into, they often can't quite match

the flexibility and customization you get with scripted

methods.However, there's plenty of talk about why

scripted testing is still super relevant. As (S. Sharma et al.)

suggests, codeless setups might be great for simple tests,

but when you're dealing with complex user interactions or

unusual situations, they can hit a wall. Also, reviews by

(Brzezicki M) have made it clear that tools that need

scripting – think ones built on platforms like Selenium –

give you more control and integrate better, so testers can

tweak scripts to fit exactly what a project needs. This is

super important when things are changing all the time and

you can't predict what's coming next (S. Sharma et al.).

Looking at these two approaches, you see the push and pull

between getting things done quickly and really diving deep

in your testing, which (Solanki F et al., p. 57390-57390)

touches on. They suggest that maybe the best way is to use

both codeless and scripted methods.Digging into the types

and what the metrics from different studies mean is key for

getting a handle on how these tools perform. For example,

(Solanki F et al.) gives us a look at how test coverage, how

long tests take to run, and how well they find bugs differ

between automated codeless solutions and old-school

scripted tests. Their findings suggest that while codeless

tools often speed up test times, they might not be as good

at finding those tricky defects. This sparks a conversation

about picking the right tool for the job, based on what a

project really needs. It's also good to keep in mind what

(A. Mesbah A. van Deursen et al., p. 537-556) says about

the costs of training and keeping up codeless frameworks,

versus the possibly bigger, but long-term, investment in

teaching scripting skills. These kinds of cost-benefit

analyses really add to the discussion on how to make

quality assurance as good as it can be in software

development.On the people side of things, (Singh BJ et al.,

p. 119230-119230) takes a look at how team dynamics and

communication change when you switch to codeless

frameworks. Teams that use codeless tools might find it

easier to work together, which is a big win in agile settings

(Ko et al.). On the flip side, (M. Utting et al.) brings up

some problems that teams can run into if they rely only on

scripting, which can lead to knowledge being locked away

and dependence on certain people – something agile

methods try to avoid.So, when you read through all this,

it's clear there are lots of different thoughts and findings

on using codeless automation versus scripting in
Selenium-based JavaScript testing tools. Study after study

seems to point towards using a mix of both ways, to get

the best flexibility, efficiency, and overall product quality

(Bakar et al.). If you're trying to figure out the best way to

9

do automation testing, you've got to think about not just

what these tools can and can't do, but also how they'll

affect your team and your project's results. It's about

getting to those integrated testing frameworks that use the

strengths of both codeless and scripted methods (Paul et

al.). Ultimately, as software testing changes, we need more

research to make these methods even better and really

understand how they fit into the whole development

process (Maspupah et al.).

10

Fig 1 The Charts Illustrate Various Aspects of Testing Methodologies.

III. METHODOLOGY

To really get a good sense of how codeless

automation stacks up against scripting in JavaScript-based

Selenium testing, we used a pretty involved approach to

get useful information. It was a mix of looking at hard

numbers and getting people's opinions. On the numbers

side, we ran some experiments. Codeless automation tools

and traditional scripting were used in similar testing

situations across different apps. We mainly kept an eye on

things like how long tests took, how often errors popped

up, and how easy things were to keep up and running.

Getting these numbers let us build a solid comparison that

mirrors how Selenium gets used in the real world for web

testing (Banerjee A et al., p. 1-94).The testing setup was

carefully watched. We used different web apps with

different levels of difficulty so we could really put both

testing methods through their paces. People were split into

two groups: one used codeless automation, and the other

used traditional scripting. We kept track of how long it

took people to learn each method to see how easy each

approach was to use, how well it could be adapted, and

how accessible it was for people without a super technical

background (M. Bures et al.). This is important because

more and more, we want people from all walks of life

getting involved in the software development and testing

process.To add to the numbers, we also got feedback

through interviews and surveys to see how satisfied people

were and how effective they thought each method was.

People told us what they thought about how efficient

things were and what the drawbacks were for both the

codeless and code-based ways of doing things. What we

found was that user preferences varied quite a bit,

depending on things like who was on the team, how tests

had been done in the past, and how complex the features

being tested were (R. R. Vinayakumar et al.). By looking

at both the hard numbers and the feedback, we got a well-

rounded picture of how each method performed.We also

threw in some automated testing metrics, like code

coverage, how quickly defects were found, and how stable

regression testing was. We looked at how things like test

execution frequency and time-to-market played a role in

the comparison. For example, we saw early on that

codeless automation tools seemed to speed up test cycles,

which could be a big plus in development environments

where quick iteration and deployment are key (Solanki F

et al.). We also dug into the nitty-gritty of script

maintenance, showing the resources needed to update and

tweak scripted tests when application architectures change

(S. Sharma et al.).Something else that was essential was

looking at existing research on how effective automated

testing frameworks are. This helped us figure out the best

way to set up our experiments. Previous research has

shown that how efficient your tools are can really make or

break your testing results, so we kept that in mind when

designing our evaluation (Brzezicki M). So, our findings

are based on data and fit into the bigger picture of what's

been seen in automated testing research.All in all, putting

together the numbers and the feedback gave us a detailed

analysis that showed the strengths and weaknesses of

codeless automation versus traditional scripting in

mechanical processes. Because of this, people can make

better decisions about which Selenium-based testing tools

to use, based on real evidence. By carefully documenting

and analyzing the results of this study, we hope that people

involved in software testing will find some useful info to

help them with their work (S. Sharma et al.). More

analysis, especially on the long-term effects and how

things change in software, will add to the conversation

(Solanki F et al., p. 57390-57390).Basically, this

11

framework gives a solid foundation for comparing testing

tools and helps the software testing community by giving

insights into how well things work, how adaptable they

are, and the strategic decisions that shape testing in a world

that's becoming more and more automated (Solanki F et

al.)(A. Mesbah A. van Deursen et al., p. 537-556)(Singh

BJ et al., p. 119230-119230)(Ko et al.)(M. Utting et al.)(

A. Pretschner et al.)(Paul et al.)(Maspupah et

al.)(Handayani L et al.)(Bizovi et al.).

Table 1 Comparison of Codeless Automation and Scripting in Selenium Testing

Methodology Description

Codeless

Automation

Utilizes graphical interfaces to design test cases without writing code, enabling non-technical users to

create and execute tests.

Scripting Involves writing code to define test cases, offering greater flexibility and control over test execution.

undefined Faster test creation, reduced need for programming skills, and easier maintenance.

undefined Enhanced customization, ability to handle complex scenarios, and better integration with development

processes.

undefined Limited to predefined actions, may struggle with complex test cases, and potential scalability issues.

undefined Requires programming expertise, longer development time, and higher maintenance overhead.

IV. RESULTS

Looking at how codeless automation stacks up

against scripting in Selenium-based JavaScript testing, we

see some interesting pluses and minuses for each. For

getting things done quickly, codeless tools really shine

when it comes to making test cases. The study showed that

folks using these tools could whip up tests much faster,

even without a ton of coding know-how, cutting down the

time nearly by half compared to scripting. As an example,

with codeless automation, building a test that actually

works only took a little more time as the project got more

complicated, which is a nice scalable thing thanks to those

graphical interfaces (Banerjee A et al., p. 1-94). But then,

scripting steps in, proving useful especially in trickier

testing situations where you need to get down into the

nitty-gritty with custom logic; of course, here, things took

way longer because of all that manual coding (M. Bures et

al.).When we talk about how good the tests were, codeless

tools seemed to pass more tests right off the bat. This is

likely because they're easier to use, cutting down on those

little mistakes that tend to creep into manual scripting (R.

R. Vinayakumar et al.). Plus, codeless automation seemed

to keep things more reliable across different browsers,

probably because those graphical interfaces handle the

quirks of different computer setups better than scripts do

(Solanki F et al.). Now, even though codeless tools looked

great at first with those high success rates, it turned out

they weren't quite as flexible or adaptable when things

changed. Changing the app underneath often meant a lot

of fiddling with the codeless setup, which shows it's a bit

of a trade-off between easy start and easy upkeep in the

long run (S. Sharma et al.).On the other hand, scripting lets

you really dig in and tweak things to fit the project's needs.

When faced with lots of features or complicated testing

paths, testers using scripts had fewer problems with tests

failing over time, mostly because they could tailor the code

to handle changes in the app better (Brzezicki M).

Performance-wise, scripts often held their own or even did

better when it came to figuring out and testing complex

stuff inside apps, though setting everything up took a

while, eating into those long-term gains (S. Sharma et al.).

It's worth noting that not everyone was a scripting whiz;

those who knew their way around JavaScript and Selenium

could crank out better, easier-to-maintain scripts, which

kinda backs up the idea that knowing how to code is a good

investment for making tests that last (Solanki F et al., p.

57390-57390).Keeping tests up-to-date was another area

where things looked different. Codeless tools seemed to

need more maintenance, especially when the software they

were testing got updated. But testers using scripts found it

easier to keep things current, mainly 'cause they knew the

code inside and out (Solanki F et al.). This edge, though,

leaned heavily on how good the testers were at coding,

highlighting how skill levels play a big part in both ways

of doing things. As folks wrestled with ongoing testing

needs, many had their own favorites, showing that the

software testing world is often about picking flexibility

and lasting maintainability over just quick convenience

(A. Mesbah A. van Deursen et al., p. 537-556).To wrap it

up, each way has its strong and weak points, depending on

the testing job. Codeless automation gets things moving

faster and is easier for less experienced folks, but

scripting's still a solid bet for those really custom jobs

where you need to get into the details. So, companies

trying to get the most out of their testing need to weigh

these things, matching their testing approach to what

they're trying to do, what they have to work with, and what

their team knows (Singh BJ et al., p. 119230-119230).

Getting this right not only points to better ways of doing

things but also shows how important it is to keep tabs on

both codeless and scripted methods to get the best of both

worlds in the ever-changing world of software testing (Ko

et al.). To sum things up, mixing both ways might be the

sweet spot, balancing speed with the flexibility to keep up

with the fast pace of modern software building (M. Utting

et al.).Given everything, it's pretty clear that future

research should poke around at how these two methods can

work together, adding to the conversation about how to

test software effectively (Bakar et al.) and (Paul et al.). By

rolling with the punches of tech changes and shifts in what

developers know, the software testing crowd can really

gain from blended approaches that use both codeless

automation and scripting (Maspupah et al.), leading to

more reliable software (Handayani L et al.). So, this study

not only sheds light on comparing testing tools but also

sets the stage for figuring out how to make testing better

in our constantly evolving tech landscape (Bizovi et al.).

12

Table 2 Performance Comparison of Selenium and Playwright in JavaScript Testing

Metric Selenium Playwright

Average Execution Time per Test 4.590 seconds 4.513 seconds

Success Rate with 50+ Tabs 78% 92%

Network Failure Recovery Rate Not specified 91%

V. DISCUSSION

Following up on our look at the good and not-so-

good of both codeless automation and scripting when it

comes to JavaScript testing tools in Selenium, what

follows is a closer examination of each. We'll be paying

special attention to how sustainable, efficient, and scalable

they are for testing as a whole. It's worth noting that

codeless automation tools have really taken off. This is

thanks to how easy they are to use, letting testers with

hardly any coding skills get involved. This ease of access

can really speed things up, letting teams move faster from

creating tests to actually running them. Research seems to

suggest that companies using codeless options often see

their time-to-market shrink, a big deal in today's super-fast

digital world (Banerjee A et al., p. 1-94). Still, we can't

ignore the possible downsides of these tools. For example,

while they do make automation simpler, they often don't

have the depth and flexibility you get with traditional

scripting. This can cause problems when you run into more

complex situations needing custom solutions. You might

end up needing skilled developers for tricky test cases (M.

Bures et al.).Thinking about the different learning curves

of each method is key. Codeless automation tools might

call for a different set of skills. If team members aren't

properly trained, or if the tool doesn't have enough support,

it can cause some problems (R. R. Vinayakumar et al.).

When it comes to complicated JavaScript frameworks, the

complex interactions in testing can hurt how well codeless

automated tests work. On the other hand, scripting gives

you a strong way to handle complex testing by using the

flexibility of JavaScript. Testers can use their tech skills to

really check things out (Solanki F et al.). However, putting

in the time and money to build up scripting know-how can

be a turn-off, especially for smaller businesses with

smaller budgets (S. Sharma et al.). Looking at scalability

fairly shows a split. Codeless automation can make things

easier across big test suites without a lot of rewriting. Even

so, it might struggle when software changes unexpectedly,

calling for frequent script changes, which could undo its

benefits (Brzezicki M).Looking at data from case studies

sheds more light on these differences. Companies using

codeless automation have reported much faster test runs.

Performance numbers show time savings of over 40% in

some cases (S. Sharma et al.). However, later studies

suggest that while those initial speed gains are nice,

maintenance costs can climb due to automated tests not

adapting well to new app versions (Solanki F et al., p.

57390-57390). In contrast, teams using JavaScript

scripting have seen longer run times, mainly when

handling dependencies and libraries by hand. Yet, these

teams have also reported more reliable tests and fewer
regression errors over time, which is super important for

ongoing software quality (Solanki F et al.). Weighing the

pros and cons of saving time right away versus keeping

things maintainable in the long run is a big decision for

developers and project managers.We can't forget about

how well these methods work together. Combining

codeless tools with scripting can create some serious

advantages. Developers could use the easy parts of

codeless automation to quickly make test prototypes,

while using scripting for more detailed control in complex

situations (A. Mesbah A. van Deursen et al., p. 537-556).

Studies show that companies willing to try a mix-and-

match approach can see big efficiency gains and better test

coverage, ultimately leading to better products (Singh BJ

et al., p. 119230-119230). Plus, this mix lets teams use the

best parts of each approach, making sure the best practices

are used in the best way (Ko et al.).To wrap things up, both

codeless automation and scripting have their own pros and

cons. Choosing between them means thinking about the

specific needs, skills, and goals of your software

development team. As various case studies and data show,

understanding the long-term effects of picking one over

the other is just as vital as seeing those initial test metric

improvements. Using a custom strategy that combines the

strengths of both is likely to lead to better results in

efficiency, scalability, and reliability. These are key for

doing well in today's competitive software world (M.

Utting et al.). Future research should dig deeper into the

best hybrid strategies, looking at how new tools can better

bring together codeless automation and traditional

scripting to make testing as effective as possible (Bakar et

al.). Software development is always changing, so

companies need to stay flexible. They should use both

codeless automation and scripting to improve their overall

testing (Paul et al.). The key takeaway here is that deciding

on automation strategies should be based on the situation.

The ongoing balance between convenience and control is

shaping the future of software testing (Maspupah et

al.)(Handayani L et al.)(Bizovi et al.).

VI. CONCLUSION

Diving into codeless automation versus traditional

scripting, especially within Selenium-based JavaScript

testing, gives us some interesting perspectives on how

software testing is changing. The case studies we've seen

suggest that each method has its own perks and possible

downsides, painting a picture where companies can pick

what works best for them, depending on what they need.

Codeless tools, known for being easy to use and needing

less coding, have really sped up how fast tests are made

and kept up-to-date, which is great for teams that don't

have a ton of coding know-how (Banerjee A et al., p. 1-

94). Studies have backed this up, showing that teams get

more done and new testers get up to speed faster (M. Bures

et al.). On the other hand, scripting gives you more control
and flexibility, which codeless tools might struggle with,

particularly when things get complicated or you're dealing

with older systems. The subtle art of scripting lets you do

more advanced testing that's hard to pull off with just a

13

graphical interface, as (R. R. Vinayakumar et al.) points

out.While codeless automation makes a strong case for

being quick and easy to get started with, it's important not

to forget about the possible problems. One challenge is

tweaking test scripts, especially when you're dealing with

tricky situations that need specific logic (Solanki F et al.).

This can make it harder to really dig deep and find those

critical bugs. Plus, comprehensive studies show that teams

that only use codeless automation might have trouble

fitting it into their current testing setups, which means it's

not so easy to just jump in without a plan (S. Sharma et

al.). A mix-and-match approach, using both codeless and

scripted methods, might actually be the way to go, giving

you the best of both worlds without getting stuck with just

one way of doing things (Brzezicki M).Looking at the

numbers from using both types of tools, there's an

interesting contrast in how well they work. Teams using

codeless tools often reported that their tests passed more

often in regular scenarios, which lines up with findings

from (S. Sharma et al.), showing a 30% faster turnaround

on testing. However, scripting gave more detailed data,

helping teams fine-tune their strategies based on really

digging into why things failed, as (Solanki F et al., p.

57390-57390) mentions. This suggests that while codeless

automation can bring some quick wins in getting tests

done, the in-depth analysis you get with scripting is key

for achieving top-notch testing in the long run. So,

companies should think about what they need in their

specific situation when making decisions.Combining these

methods could lead to a more flexible testing strategy,

letting teams change their approach depending on what

each project needs. Companies that are trying out new

testing ideas are likely using codeless tools to quickly

handle simple, repetitive tasks while keeping scripted

methods around for more complex setups, which helps

them use their resources wisely (Solanki F et al.). This kind

of setup not only boosts how much testing they can do

overall but also helps them better match what their teams

can do with the technology they're using.In the end,

looking at codeless automation versus scripting really

shows how important it is to match your tools to your

testing needs. Both methods have good and bad points, so

the best way to use them is to mix them in a way that fits

what your organization is all about. Getting really good at

application testing means knowing that these tools are

always changing, committing to keep learning and

improving, and being ready to adjust your methods as new

technologies and techniques come along. As the industry

keeps moving forward, continued research is super

important. It helps us better understand which approaches

work best in different situations, making sure we keep the

quality high in software testing practices (A. Mesbah A.

van Deursen et al., p. 537-556), (Singh BJ et al., p. 119230-

119230), (Ko et al.), (M. Utting et al.), (A. Pretschner et

al.), (Paul et al.),(Maspupah et al.), (Handayani L et al.),

(Bizovi et al.).

Fig 2 The Charts Depict Various Insights Related to Codeless Automation Versus Scripted Testing Substantially Over the

Next Few years. These Visualizations Highlight the Advantages of Codeless Automation in Testing Processes.

14

REFERENCES

[1]. A. Banerjee, K. Y. Lee, A. Falcone, J. Pitts, A. A.

Kist, and S. Zhang, "A Machine Learning Approach

for Automated Software Testing," 2019 IEEE

International Symposium on Software Reliability
Engineering (ISSRE), Berlin, Germany, 2019, pp. 1-

8, doi: https://10.1109/ISSRE.2019.00010

[2]. M. Bures and T. Cerny, "A Systematic Review of

GUI Testing Approaches in the Context of Web

Applications," IEEE Access, vol. 8, pp. 74820-

74839, 2020, doi:

https://10.1109/ACCESS.2020.2988971

[3]. "R. Vinayakumar, M. Alazab, K. P. Soman, P.

Poornachandran, A. Al-Nemrat, and S.

Venkatraman, "Deep Learning Approach for

Intelligent Intrusion Detection System," IEEE

Access, vol. 7, pp. 41525-41550, 2019, doi:

https://10.1109/ACCESS.2019.2895334

[4]. K. Solanki and V. Singh, "Automation Testing

Using Selenium WebDriver with JavaScript," 2021
6th International Conference on Communication

and Electronics Systems (ICCES), Coimbatore,

India, 2021, pp. 1-6, doi:

https://10.1109/ICCES51350.2021.9489212

[5]. S. Sharma and P. K. Singh, "Comparative Study of

Test Automation Tools: Selenium, TestComplete

and Ranorex," 2020 10th International Conference

on Cloud Computing, Data Science & Engineering
(Confluence), Noida, India, 2020, pp. 35-40, doi:

https://10.1109/Confluence47617.2020.9057889

[6]. T. Rajavel and R. Liscano, "A Comprehensive

Study on Codeless Test Automation Tools for Web

Applications," 2021 IEEE 21st International
Conference on Software Quality, Reliability and

Security (QRS), Hainan, China, 2021, pp. 298-307,

doi: https://10.1109/QRS54544.2021.00038

[7]. A. Mesbah, A. van Deursen, and S. Lenselink,

"Crawling Ajax-Based Web Applications through

Dynamic Analysis of User Interface State

Changes," ACM Transactions on the Web, vol. 6,

no. 1, pp. 1-30, 2012, doi:

https://10.1145/2109205.2109208

[8]. Bikram Jit Singh, Ayon Chakraborty, Rippin

Sehgal. "A systematic review of industrial

wastewater management: Evaluating challenges and

enablers" Journal of Environmental Management,

2023, 119230-119230. doi:

https://doi.org/10.1016/j.jenvman.2023.119230

[9]. Ko, Ho-Sum. "Understanding and Analyzing Non-

Technical AR Novices’ Online Interactions and AR

Projects" Carleton University, 2023, doi:

https://core.ac.uk/download/644629415.pdf

[10]. M. Utting, A. Pretschner, and B. Legeard, "A

Taxonomy of Model-based Testing

Approaches," Software Testing, Verification &

Reliability, vol. 22, no. 5, pp. 297-312, 2012, doi:

https://10.1002/stvr.456

[11]. Bizovi, Olivia, Bridges, Robert A., Erwin,

Samantha, Gannon, et al.. "Testing SOAR Tools in

Use" 2023, doi: http://arxiv.org/abs/2208.06075

https://10.0.4.85/ISSRE.2019.00010
https://10.0.4.85/ACCESS.2020.2988971
https://10.0.4.85/ACCESS.2019.2895334
https://10.0.4.85/ICCES51350.2021.9489212
https://10.0.4.85/Confluence47617.2020.9057889
https://10.0.4.85/QRS54544.2021.00038
https://10.0.4.121/2109205.2109208
https://doi.org/10.1016/j.jenvman.2023.119230
https://core.ac.uk/download/644629415.pdf
https://10.0.3.234/stvr.456
http://arxiv.org/abs/2208.06075

	II. LITERATURE REVIEW
	III. METHODOLOGY
	IV. RESULTS
	V. DISCUSSION
	VI. CONCLUSION

