DOI: https://doi.org/10.38124/ijsrmt.v4i9.856

Prefabrication as A Means for Modular Building Techniques and Automation

Michael Olusegun Adamolekun¹; Monday Olutayo Olaoye²

¹Department of Architecture Ambrose Alli University, Ekpoma, Nigeria. ²College of Computing Mcpherson University Abeokuta, Ogun State Nigeria.

Publication Date 2025/10/24

Abstract

The global construction industry is observing a significant revolution towards faster, cost-effective, and sustainable building techniques, with modular construction at the lead. This practice comprises off-site construction of building components, leveraging factory-controlled atmospheres to improve efficiency, reduce waste, and minimize on-site labor challenges. Prefabrication in contemporary architecture and civil infrastructure has been energized by innovations in digital design tools, Building Information Modelling (BIM), robotic manufacturing, and sustainable materials. These developments address current encounters such as housing deficiencies, rapid urbanization, labor shortage, and environmental dilapidation. The significance of modular construction has been highlighted during global disorders like the COVID-19 pandemic, showcasing the significance of speediness and scalability in edifice. Modular construction methods, comprising panelized (2D), volumetric (3D), hybrid, kit-of-parts, and sub-component assembly, offer benefits such as faster construction timelines, betterquality control, and reduced on-site waste likened to traditional approaches. However, challenges such as site-specific limitations, lack of technical know-how, transport logistics, upfront design complication, public observation, and controlling compliance delay the prevalent acceptance of modular construction. Integrating software engineering, such as design optimization using Python, logistics optimization through route optimization algorithms, and manufacturing automation with control systems, can improve prefabrication procedures through automation and optimization. These technologies can modernize processes, advance efficiency, and address key challenges confronted in modular construction. Overall, with the right approaches and investments, modular construction has the possible to transform building design and delivery practices globally.

Keywords: Modular Construction, Prefabrication, Digital design tools, Building Information Modelling (BIM), Software engineering, Automation.

I. INTRODUCTION

The global construction industry is undergoing a paradigm shift towards faster, more cost-effective, and sustainable building methods. Modular construction, a technique that involves off-site fabrication of building components, is at the forefront of this transformation. This process, known as prefabrication, leverages factory-controlled environments to enhance efficiency, reduce waste, and minimize on-site labor challenges. Modular building enables parallel workflows, allowing site preparation and module manufacturing to occur simultaneously, significantly shortening project timelines. (Ngowi, Pienaar, Talukhaba, & Mbachu, 2005).

Prefabrication is a concept, to recent advancements in digital design tools, Building Information Modelling

(BIM), robotic manufacturing, and sustainable materials have reinvigorated its application in modern architecture and civil infrastructure, (Malaia, 2020). It offers a viable solution to contemporary challenges such as housing shortages, rapid urbanization, labor scarcity, and environmental degradation. The relevance of modular construction has become increasingly pronounced in the wake of global disruptions, such as the COVID-19 pandemic, (Ren, Wang, Liu, & Liu, 2020), where speed and scalability in construction became critical.

II. MODULAR CONSTRUCTION

Modular Construction is the design concept and construction method that uses pre-fabricated, repeatable modules or units, manufactured off-site in controlled environments, and assembled on-site. It exists way back to

Adamolekun, M. O., & Olaoye, M. O. (2025). The Prefabrication as A Means for Modular Building Techniques and Automation. *International Journal of Scientific Research and Modern Technology*, 4(9), 231–242. https://doi.org/10.38124/ijsrmt.v4i9.856

ancient civilizations where prefabrication principles are used in the 17th century with the construction of prefabricated wooden houses by English engineer Henry Manning, (Herbert, G. 1978). The turning point was in the 20th century, particularly after World War II, when rapid housing solutions were needed in war-torn Europe and Japan. Modular construction evolved through the midcentury modernist movement, with architects like Buckminster Fuller and Jean Prouvé experimenting with modular components. By the 1990s and early 2000s, modular architecture experienced a resurgence driven by tools, sustainable practices, digital design industrialized construction processes. This resurgence was further fueled by the integration of Building Information Modeling (BIM), robotics, and green certifications, making modular architecture more efficient, adaptable, and environmentally friendly. Today, modular architecture is increasingly recognized as a mainstream approach to solving urban challenges. This technique increases construction speed, reducing costs, and improving quality. It also supports flexibility and scalability, and the concept to adapt or expand buildings over time without extensive structural changes, (Ferdous, Bai, Ngo, Manalo, & Mendis, 2019).

According to Akindeinde, Akinola, Ojo, & Okechukwu (2024), it is applicability in residential,, civil, commercial, healthcare, institutional and educational building types gaining momentum globally due to its alignment with sustainable and efficient construction practices, supporting better quality control and environmental sustainability by minimizing construction time and material waste.

➤ Modular Construction Application Techniques

The techniques involve prefabrication modules manufactured off-site and assembled on-site. These techniques use standardized design, precision manufacturing, and transportable units, resulting in faster construction timelines, improved quality control, and reduced on-site waste compared to traditional methods.

• Panelized (2D) Modular Construction

This is a modular construction technique that involves the off-site fabrication of flat building components such as floor slabs, wall and insulation panels, roof sections, and other structural or non-structural elements, and include preinstalled insulation, windows, and sheathing. These prefabricated panels are then transported to the construction site and assembled to fit in the proposed building design. (Lawson & Ogden, 2008).

Pre-installed services like electrical conduits, plumbing lines, and HVAC ducts can also be integrated into panels for improved efficiency. This approach uses Computer-Aided Design (CAD) and Building Information Modeling (BIM) to ensure precision in prefabrication and seamless coordination across trades.

According to Lawson, Ogden, & Bergin (2012), the advantages of this techniques including easiness to be transported to site, design flexibility, faster construction timeline, improved quality control, and inculcation of concepts. Panelized sustainability systems accommodate custom architectural layouts, sloped roofs, and complex facades, making them suitable for urban infill projects or architecturally demanding environments. They are flat-packed, enabling longer-distance shipping with fewer logistical challenges than volumetric units. On-site assembly is faster than conventional stick-built methods, as structural elements are pre-measured, pre-cut, and ready for direct installation. Factory-built panels ensure higher precision, reduced waste, and better integration of building systems, leading to enhanced structural integrity, thermal performance, and long-term durability. Factory-built panels also generate less material waste and can be made with sustainable or recycled materials, facilitating better energy performance.

Panelized modular construction, despite its benefits, has several challenges. It requires significant on-site labor for assembly, sealing, and finishing, and can be weathersensitive due to the panels not being enclosed. High coordination between design, manufacturing, and on-site teams is required to avoid misalignments or fitment issues. Custom panel designs can reduce economies of scale, making the technique less cost-effective for small or one-off projects.

Fig 1 Panelized (2D) Modular Construction Source: Google, 2018

Volumetric (3D) Modular Construction

Volumetric modular construction, also known as 3D modular construction, is an advanced off-site construction technique that involves the manufacturing of fully enclosed, three-dimensional structural units by a manufacturing factory. These units are then transported to the building site and assembled by vertical stacking, placing side-by-side, or arranged in various configurations forming the complete buildings or portions of a structure. Each module can be a room, an entire apartment, or a section of a larger facility, complete with internal finishes, electrical systems, plumbing, insulation, and even fixtures. (Bui, Limam, Desevedavy, & Damichey, 2021). Volumetric modular construction is a highly integrated form of off-site construction that offers benefits as stipulated by Wasim, & Oliveira (2022), such as speed, quality control, sustainability, and scalability. It is commonly used in projects requiring high repeatability and rapid deployment, such as hotels, dormitories, schools,

hospitals, office buildings, and residential developments. Key characteristics of volumetric modular construction include factory-finished modules, parallel construction processes, structural autonomy, and rapid on-site assembly using cranes. These features reduce overall construction time by 30-50% and minimize disruption at the project site, making it a critical advantage in urban or sensitive environments.

The limitations to these includes design and transportation constraints, when rigidity in form and layout is not achieved, initial investment, structural integration, building code and regulation barriers. When modules are large, they requires careful planning, especially in regions with poor road infrastructure or tight urban spaces. The high capital cost of setting up modular factories and assembly lines makes it less accessible for small-scale developers. Structural integration is crucial in seismic or high-wind zones for load transfer and stability

Fig 2 Volumetric (3D) Modular Construction Source: Research Gate, 2015

• Hybrid Modular Construction

Hybrid modular construction is a construction method that combines the strengths of both volumetric (3D) and panelized (2D) prefabrication systems. It aims to optimize design flexibility, construction efficiency, and performance by deploying volumetric modules for repetitive spaces like bedrooms and bathrooms, and panelized components for larger, more open spaces like corridors, atriums, or lobbies. As demand for faster, more cost-effective, and sustainable building methods increases, hybrid modular construction is becoming a flexible and scalable solution. (Lawson et al, 2008). Hybrid modular construction systems often reduces total construction time by up to 50% compared to traditional methods. (Da Silva, Silva, Tankova, Craveiro, Simões, Costa, D'Aniello & Landolfo, 2021). Hybrid modular construction offers design versatility, allowing for the integration of custom-designed spaces alongside repeatable modules. It also offers optimized transportation and logistics, as panelized components are easier to transport, particularly in tight or urban environments.

Hybrid construction also reduces site time, allowing parallel construction while modules are fabricated, minimizing weather delays and faster project delivery. Volumetric modules achieve economies of scale through repetition, while panelized elements provide cost control in complex or less repetitive parts of the building. Hybrid systems also promote sustainability, reducing waste, energy usage, and emissions, as well as facilitating better thermal performance, airtightness, and opportunities for integrating renewable energy systems.

The challenges in this technique includes coordination complexity, structural integration, cost of dual systems, skilled labor and knowledge gap. Synchronizing different off-site systems requires precise design coordination and supply chain management. Structural compatibility between 2D and 3D systems must be engineered for load transfer, stability, and fire safety. Adoption may be limited in regions lacking experience or infrastructure to support hybrid modular approaches.

Fig 3 Hybrid Modular Construction Source: Google, 2012

• Kit-of-Parts Modular Construction

Kit-of-parts modular construction is a design approach that involves the assembly of prefabricated components, often standardized and interchangeable, to create various structures. Drawing from industrial design principles, it emphasizes modularity, flexibility, and scalability, allows for efficientive construction from pre-designed and preengineered parts. This method differs from fully volumetric modular systems as it provides repeatable, interoperable elements like beams, columns, panels, floor systems, connectors, and cladding units that can be assembled like a kit to suit project-specific needs. (Kennis & Alidou, 2004).

On-site construction is significantly faster due to prefabricated components designed to fit together with precision, reducing labor intensity and weather-related delays. Standardized components result in more efficient material usage and less construction waste, aligning with sustainable building practices. The system is highly adaptable to temporary buildings, emergency shelters, and incremental housing. Applications include disaster-relief housing, educational and healthcare facilities, affordable housing and urban infill, and exhibition pavilions and temporary installations.

According to Brütting, Senatore, & Fivet (2021), core principles of kit-of-parts construction include standardization, interchangeability, ease of assembly and disassembly, and flexibility in design. Standardized parts allow for a wide variety of configurations, spatial arrangements, and architectural expressions, while

allowing for quick on-site construction with minimal tools and labor. Kit-of-parts construction has been successfully used in disaster relief housing, educational and healthcare facilities, affordable housing and urban infill, and exhibition pavilions and temporary installations.

Fig 4 Kit-of-Parts Modular Construction Source: Google, 2020

• Sub-Component Assembly

Sub-Component Assembly is a crucial phase in modular construction, facilitating efficiency, precision, and scalability. It involves the pre-assembly of smaller building elements or parts, such as wall panels, floor slabs, façade units, and mechanical, electrical and plumbing (MEP) pods, before final on-site or modular integration. These components are non-volumetric and non-occupiable on their own, serving as building blocks that can be integrated into larger modules in a factory setting or assembled

directly on-site. Advantages of sub-component assembly include improved quality control, efficiency and parallel workflow, reduced on-site labor, and design flexibility. It is common in modern construction, such as healthcare facilities, high-rise buildings, educational buildings, and infrastructure. This technique is central to Design for Manufacture and Assembly (DfMA) approaches, where building elements are optimized for off-site production and on-site assembly. Its challenges include interface precision, logistics and storage, and specialized knowledge.

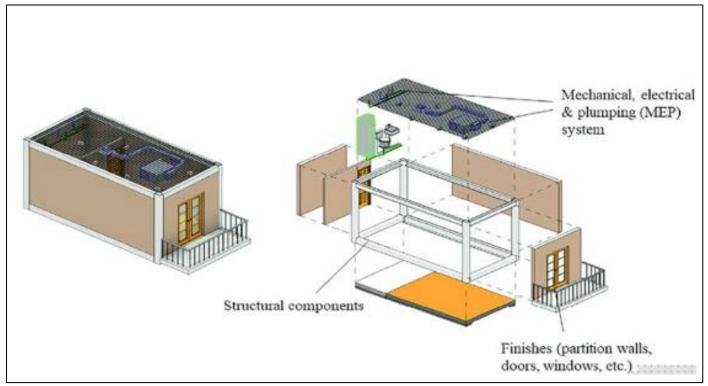


Fig 5 Sub-Component Assembly Source: Google, 2019

III. PREFABRICATION APPROACHES AND BUILDING MATERIALS

Prefabrication in building construction is the process and methodology where various components of a building such as structural elements, wall panels, mechanical systems, or entire volumetric units are manufactured offsite in a controlled factory setting and then transported to the construction site for quick assembly. (Arif & Egbu, 2010).

buildings incorporate some degree of prefabrication, with some structures using complex threedimensional prefabricated components like load-bearing modules, bathroom pods, or stair and elevator cores. As the prefabrication rate increases, buildings are more accurately considered prefabricated structures. These structures may consist of fully enclosed volumetric modules, partially open-sided modules, or corner-supported units, each serving specific roles within the overall building assembly. Some modular buildings adopt linear, bi-dimensional, or tri-dimensional prefabricated elements, or hybrid modular systems that combine these approaches. Modules may rely on an external primary structural frame to resist structural loads, or be self-supporting. This wide range of methods reflects the diversity in modular construction approaches, each tailored to meet performance, speed, and architectural needs.

➤ Precast Concrete Panels

Precast concrete panels are a prefabricated building component made from concrete that is cast and cured in a factory or casting yard. They are then transported to the construction site and assembled to form the proposed building structure. It is a faster way of construction,

improved quality, durability, and cost-effectiveness. They are commonly used in various construction projects, including building facades, walls, floors, and roofs. Factory-controlled manufacturing ensures consistent quality and reduces defects.

➤ Engineered Wood Products

Engineered Wood Products (EWPs) are materials made by combining wood fibers, strands, or veneers with adhesives and chemicals to create stronger and more durable products. Examples include Glued-Laminated Timber (Glulam) made of layers of wood laminated together, Laminated Veneer Lumber (LVL) which are layers of wood veneer pressed together, Oriented Strand Board (OSB) that is wood strands pressed together, and Plywood formed in layers of wood veneer pressed together. Cross-Laminated Timber (CLT) made by stacking layers of wood panels at right angles to each other, typically in a 90-degree orientation.

> Structural Steel Frames

Structural steel frames are a construction approaches using steel beams comprising of horizontal members supporting floors and roofs, columns translated as vertical members transferring loads to the foundation and connections between the beams and columns forming joints. To create a building form work. This framework supports the building loads, including walls, floors, roofs, and expected external forces and loads like wind and earthquakes etc. Structural steel frames are ideal for various building types due to their strength, durability, flexibility, and speed of construction.

➤ Prefabricated Wall Panels

Prefabricated wall panels are factory-manufactured, on-site wall sections with benefits like faster construction, improved quality, energy efficiency, and cost-effectiveness. Types include Structural Insulated Panels (SIPs), consisting ot insulating foam core, typically made up of insulation materials like expanded polystyrene (EPS) and structural facings like the plywood and OBS. Insulated Concrete Forms (ICFs), filled with concrete to create a solid structural wall, prefabricated concrete panels, and modular wall panels.

➤ MEP PODS (Mechanical, Electrical, Plumbing)

MEP Pods are prefabricated modules with integrated service units, such as bathroom or kitchen pods, designed to minimize on-site labor and installation time. Where mechanical systems accounts for heating, ventilation, and air conditioning (HVAC), electrical systems is involved in power distribution, lighting, and controls and plumbing systems involved in water supply, drainage, and fixtures.

IV. ANALYSIS ON DESIGN AND ARCHITECTURAL CONSIDERATION

➤ Integration with BIM

Building Information Modeling (BIM) is a crucial tool in prefabricated modular construction, providing a digital representation of a building physical and functional characteristics. It aids in precise design detailing and clash detection, reducing on-site adjustments and delays. BIM enhances design flexibility, ensuring compliance with spatial and structural constraints, and aids early-stage decision-making related to materials, structural load paths, and energy performance. It also supports scheduling and cost estimation, crucial for prefabricated projects. BIM data-driven prefabrication workflows improve productivity and reduce waste. BIM transforms construction workflows by bridging the gap between design intent and manufacturing requirements, especially in modular and off-site construction.

➤ Rigidity and Load Transfer

Modular prefabrication is crucial for ensuring structural integrity and occupant comfort, as it involves the assembly of multiple pre-manufactured units. Rigidity refers to the structural stiffness of the module, which must be self-supporting during transportation, lifting, and installation. This often requires robust connection systems, load-bearing wall panels, and reinforcement at stress points. Poor rigidity can lead to misalignment during assembly or long-term structural issues. High-rise modular buildings require rigidity to resist lateral loads, which can be addressed through hybrid structural solutions. Acoustic performance is essential to prevent airborne sound and impact noise from transferring between units. Key strategies include double-layered wall and floor systems, resilient channels and acoustic matting, high-density

materials and acoustic insulation, and sealing of gaps and penetrations during module connection. Modular systems must also comply with regional building codes like the International Building Code or local Noise Control Ordinances.

➤ Functionality and Aesthetic Flexibility

Consideration on combined functionality and aesthetic flexibility to meet practical requirements and design preferences involves designing modules that maximize available space, adapt to different uses over time, integrate Mechanical, Electrical, and Plumbing (MEP) systems, and meet or exceed building codes and standards for structural integrity, energy efficiency, and safety.

Functionality in modular construction involves the ability of the building to serve its intended purpose effectively, which is influenced by several design These spatial considerations. include efficiency, adaptability, seamless integration of MEP systems, durability and performance, and aesthetic flexibility. Aesthetic flexibility in modular construction refers to the ability to adapt and personalize the exterior and interior of the building while maintaining its modular nature. Key elements of aesthetic flexibility include exterior finishes, facade customization, interior design, integration with site context, and modular expansion.

Modular buildings can be designed to fit within a predetermined grid, ensuring efficient layouts for residential, commercial, or industrial purposes. They can also incorporate unique facades, such as patterned cladding, balconies, or overhangs, to break up the rigid lines of standard designs. Interior design options allow for easy incorporation of built-in furniture, shelving, or specialized spaces to suit specific user needs.

Aesthetic flexibility also includes the building relationship with its environment, such as solar orientation or landscaping. Modular construction allows for future expansion or modifications, ensuring that the building retains both its aesthetic appeal and functional utility.

> Safety and Acoustic Performance

Modular construction is a growing trend, and safety and acoustic performance are crucial considerations. Safety is a fundamental concern in any building project, and modular buildings must adhere to strict building codes and regulations. Key aspects of safety include structural integrity and load-bearing capacity, transportation and assembly safety, crane operation and rigging, and site access and traffic management. By designing and constructing modules with these considerations in mind, modular buildings can be built to the same safety standards as traditional buildings, if not more effectively

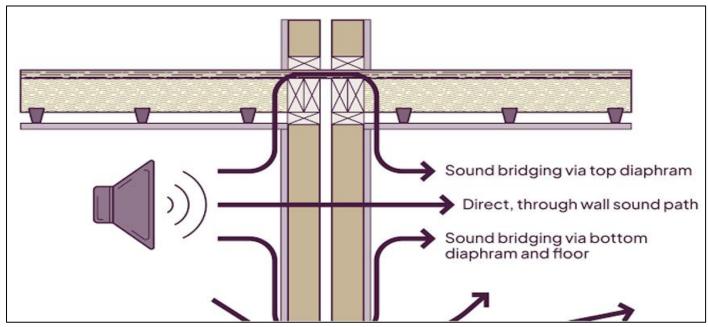


Fig 6 Diagram Showing Systematic Acoustic Performance of Building

Acoustic performance is also crucial in modular buildings, as it reduces noise pollution from both external sources and internal sources. Key aspects of acoustic performance include sound insulation materials, such as sound-absorbing insulation, acoustic barriers, double or

triple-glazed windows, sealing gaps and joints, floating floors, and acoustic ceilings. The layout and internal configuration of a modular building can also affect how sound travels, such as placing noise-generating activities away from quiet spaces.

Table 1 Criteria/ Considerations for Modular Construction

S/N	Criteria/	Details
	Considerations	
1.	Dimensional Coordination	- Consistency in module sizes aiding stacking and transporting.
	and Standardization	- Modular grid systems
2.	Structural Stability	- Load-bearing capacity of modules, resisting wind, seismic, and other forces
		- Joints between modules and foundations
3.	Building Services	- Pre-installation of HVAC, electrical, and plumbing in modules
	Integration	- Access for maintenance post-assembly
4.	Transportation and	- Size and weight limits or road or rail transport
	Handling	- Lifting points and crane requirements for placement
5.	Assembly and	- Ease of on-site installation
	Interconnection	- Seamless integration of mechanical, electrical, and plumbing (MEP) systems
		- Inter-module alignment and connection system
6.	Fire Safety and Code	- Fire-resistant materials and separation
	Compliance	- Compliance with local building codes and regulations
7.	Thermal and Acoustic	- Insulation strategies within walls, floors, and ceilings
	Performance	- Provision for soundproofing between adjacent modules
8	Aesthetic	- Exterior finishes and façade customization
		- Interior layouts and finishes to match client needs
9.	Durability and Reusability	
		 Durability and adaptability of modules
		- Potential for disassembly, relocation, or repurposing
10.	- Use of eco-friendly	- Use of eco-friendly materials
	materials	- Integration of passive and active energy strategies (e.g., solar, ventilation)
	- Integration of passive and	
	active energy strategies	
	(e.g., solar, ventilation)	

V. CHALLENGES OF PREFABRICATION IN MODULAR CONSTRUCTION

> Site-Specific Constraints

Modular construction is often restricted by the physical and environmental characteristics of a construction site, such as limited access for large modules, topographical and geotechnical conditions, and weather and local climate. Urban and congested areas may have narrow roads, overhead cables, or other barriers, while uneven terrain, poor soil conditions, or high water tables can complicate foundation work.

➤ Lack of Technical Know-How

The widespread adoption of modular prefabrication faces several challenges, including a lack of professionals with adequate training, design and engineering gaps, construction and installation errors, and limited education and training programs. These issues hinder the widespread adoption of modular construction, particularly in developing countries, and contribute to structural weaknesses, leaks, and misalignments.

> Transport Logistics

Large, bulky modules from factory to site pose significant logistical challenges due to size and weight restrictions, high costs of long-distance shipping, and the risk of damage due to poor road conditions, improper handling, or environmental conditions.

➤ Upfront Design Complexity

Modular construction requires detailed planning from the start, a rigid design sequence, increased coordination requirements, and customization limits due to standardization. This process limits flexibility and requires collaboration among architects, engineers, manufacturers, and contractors, potentially limiting architectural creativity.

➤ Public Perception

Modular buildings face hurdles in public acceptance, including misconceptions about quality, aesthetic concerns, and social stigma. Many associate them with temporary or low-quality structures, while others view them as dull or industrial, affecting desirability and market value.

> Regulations and Compliances

Modular projects face challenges in navigating building codes, zoning laws, and approval processes due to code inconsistencies, inspection challenges, and the lack of modular-specific guidelines in many regions, which may lead to delays or misinterpretations.

VI. INTEGRATING SOFTWARE ENGINEERING IN MODULAR CONSTRUCTION: ENHANCING PREFABRICATION TECHNIQUES THROUGH AUTOMATION AND OPTIMIZATION

➤ Design Optimization using Python (Genetic Algorithms)
A core part of prefabrication and modular construction is design optimization. This is to reduce material costs or maximize energy efficiency. A genetic algorithm (GA) is a powerful optimization technique inspired by natural selection. Using Python and a genetic algorithm to optimize a building design based on certain constraints (e.g., cost, energy efficiency, and structural integrity).

Code: Simple Genetic Algorithm for Design Optimization

```
...
    orf generate design():
        reture op. render, restlet($, 18, $13e-5) $ knote delige parameters ($ features)
   mr evaluate dealgn(dealgn):
       east = sam(design) & Similified and Postion: not of Shalph parameters
energy_efficiency = 50 - cost = Sambalis energy_efficiency (laser and = better efficiency)
return energy_efficiency = cost = Similation; talkecs energy_efficiency and cost
    of selection(population):
        sorted population - sorted(population, key-limits as evaluate design(s), reverse-live)
        return seried population( lam(population)//2)
   of crosswer(parentl, parentl):
       (TORSOWER_DOEST + Dem(parents) // 2
        child = rp.concatenate((parenti[:crossover_goint], parenti[crossover_goint:]))
    of extate(design):
        mutation_moint = running random(#, lam(design) + 1)
        design[mutation_point] = rundom_randirt(0, 16)
        return dealer
    ms genetic_algorithm(population_alis=500, generations=100)
        population = (generals_design() for _ in responsedation_size))
        for generation in range(generations):
            selected - selection(population)
            non-population o pelected[1]
             untils lem(new_population) < population_size:
                parenti, parent2 - runion.sample(salected, 2)
                Child - (ressever(perwill, parent2)
                child - metate (child)
                new population appendichild)
            population + res_population
            print("Georgetics [generations]) Nort Design Conjecture = [evaluate_design(selected(#)))")
        best_design - man(population, key-limits at evaluate_design(x))
        return best, decign
    hest design - genetic algorithm()
    print("Self Smight ", Best Seeigh)
```

> Explanation:

- Designs are signified by arrays (in this case, size=5 for ease).
- Evaluation combines many factors (e.g., cost and energy efficiency).
- The genetic algorithm mimics natural selection, selecting the best designs, crossing them over, and introducing mutations to find an optimal design.
- This could be adapted for modular construction by simulating multiple configurations of modules and their associated costs/efficiencies

➤ Logistics Optimization (Route Optimization)

Handling the logistics of conveying prefabricated modules from factories to construction sites is essential. Using route optimization algorithms like Dijkstra's algorithm or *A search** can support minimize conveyance time and cost.

To find the shortest path for module delivery.

• Code: A* Search for Route Optimization

```
| Description of section of secti
```

> Explanation:

- Graph signifies different places and distances between them (e.g., locations of prefabricated modules and factories).
- Heuristics are estimates of the distance from each location to the goal (e.g., how close a factory is to the construction site).
- A algorithm* efficiently finds the shortest path, helping to improve the delivery route for prefabricated modules.
- ➤ Manufacturing Automation with Python (Control Systems Integration)

In prefabrication, the computerization of manufacturing practices can be accomplished using control systems that interface with robotic arms and CNC machines. Software can interface with a modest control system using Python.

Code: Simple Control System for Robotic Arm Movement.

> Explanation:

- The Robotic Arm class simulates a robotic arm that can move, pick up materials, and place them.
- The automated manufacturing process establishes a modest robotic task in a modular construction factory, such as moving and placing components.

VII. RECOMMENDATION AND CONCLUSION

Modular construction, facilitated by prefabrication techniques, is a transformative shift in the building industry, offering faster construction timelines, cost predictability, improved quality control, and reduced environmental impact. However, it requires overcoming challenges highlighted above and with right regulations, approaches and investments, policies, and public-private collaboration, modular construction can redefine building design and delivery efficiently, affordably, and sustainably.

REFERENCES

- [1]. Arif, M., & Egbu, C. (2010). Making a case for offsite construction in China. Engineering, Construction and Architectural Management, 17(6), 536–548.
 - https://doi.org/10.1108/09699981011090165
- [2]. Akindeinde, A., Akinola, J., Ojo, L., & Okechukwu, A. (2024). Impact of modular integrated construction indicators on sustainable performance metrics in Nigeria. Construction Economics and Building.
 - https://doi.org/10.5130/ajceb.v24i4/5.8865.
- [3]. Bui, T., Limam, A., Desevedavy, G., & Damichey, D. (2021). Highly Environmental-Efficient Modular Houses Considering Construction and Deconstruction Aspects. Lecture Notes in Civil Engineering. https://doi.org/10.1007/978-981-16-7160-9_66.

- [4]. Brütting, J., Senatore, G., & Fivet, C. (2021). Design and fabrication of a reusable kit of parts for diverse structures. Automation in Construction. https://doi.org/10.1016/J.AUTCON.2021.103614.
- [5]. Da Silva, S., Silva, L., Tankova, T., Craveiro, H., Simões, R., Costa, R., D'Aniello, M., & Landolfo, R. (2021). Performance of modular hybrid cold-formed/tubular structural system. Structures, 30, 1006-1019. https://doi.org/10.1016/J.ISTRUC.2021.01.066
- [6]. Ferdous, W., Bai, Y., Ngo, T., Manalo, A., & Mendis, P. (2019). New advancements, challenges and opportunities of multi-storey modular buildings A state-of-the-art review. Engineering Structures. https://doi.org/10.1016/J.ENGSTRUCT.2019.01.06
- [7]. Herbert, G. (1978). Pioneers of prefabrication: The British contribution in the nineteenth century. Baltimore, MD: Johns Hopkins University Press.
- [8]. Kennis, P., & Alidou, M. (2004). A kit comprising a plurality of modular elements to be assembled to form a construction scaled-reproducing a scale of construction.
- [9]. Lawson, R., & Ogden, R. (2008). 'Hybrid' light steel panel and modular systems. Thin-walled Structures, 46, 720-730. https://doi.org/10.1016/J.TWS.2008.01.042.
- [10]. Lawson, R. M., Ogden, R. G., & Bergin, R. (2012). Application of modular construction in high-rise buildings. Journal of Architectural Engineering, 18(2), 148–154. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000057
- [11]. Malaia, K. (2020). A Unit of Homemaking: The Prefabricated Panel and Domestic Architecture in the Late Soviet Union. Architectural Histories. https://doi.org/10.5334/AH.453.
- [12]. Ngowi, A., Pienaar, E., Talukhaba, A., & Mbachu, J. (2005). The globalisation of the construction industry A review. Building and Environment, 40, 135-141.
 - https://doi.org/10.1016/J.BUILDENV.2004.05.008.
- [13]. Ren, J., Wang, Y., Liu, Q., & Liu, Y. (2020). Numerical Study of Three Ventilation Strategies in a prefabricated COVID-19 inpatient ward. Building and Environment, 188, 107467 107467. https://doi.org/10.1016/j.buildenv.2020.107467
- [14]. Wasim, M., & Oliveira, O. (2022). Efficient design of a prefabricated steel structure integrating design for manufacture and assembly concepts. Australian Journal of Structural Engineering, 23, 356 369. https://doi.org/10.1080/13287982.2022.2092949.
- [15]. Sawhney, A., Riley, M., & Irizarry, J. (2020). *Construction 4.0: An innovation platform for the built environment.* Routledge.
- [16]. Russell, S. J., & Norvig, P. (2020). *Artificial intelligence: A modern approach* (4th ed.). Pearson.

[17]. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Wiley. Eastman, C. M., Teicholz, P., Sacks, R., & Liston, K. (2011). BIM handbook: A guide to building information modeling for owners, managers, designers, engineers and contractors (2nd ed.). Wiley.