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Abstract 
Modern societies are based on Critical Infrastructure Systems (CIS) which are becoming more susceptible to attacks by cyber-

criminals, brute force, natural calamities and system interdependencies. Classical risk management models like the RMF and 

PRAM have some formal guidelines but are faced with the fact that it is impossible to manage dynamic and volatile threats 

since they are by definition siloed and emergent. Recent developments in Artificial Intelligence (AI) provide a new 

opportunity to assess potential vulnerabilities and prioritize risks in a predictive manner, but the current applications are 

usually sector-specific, have low scalability, and lack interpretability and real-time adaptability. The current paper is a 

conceptual review that combines the theory of risk management, the literature on the assessment of vulnerability, and the 

application of AI in various fields. It also introduces some important gaps in the existing literature, such as the lack of coherent 

frameworks, as well as, the lack of discussion of domain-wide interdependencies. The study, in turn, proposes a new AI-based 

framework that includes data integration based on multiple sources, hybrid AI modelling, dynamic risk scoring, decision-

support tools, and feedback loops. The framework helps to develop the theory of AI-based risk management and provides 

realistic directions to enhance predictive accuracy, prioritisation, and resilience in CIS. It also preconditions future empirical 

confirmation and application of policy. 
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I. INTRODUCTION 
 

Critical Infrastructure Systems (CIS) are the 

mainstay of present societies, including the energy sector, 

transport sector, water sector, telecommunication sector, 

and healthcare section (Bennett & Stephens, 2023). They 

are free flowing and their smooth running is the foundation 

of national security, economic stability, and public safety 

(Lewis, 2019). Yet, these systems are becoming more 

susceptible to various threats such as cyber-attacks, natural 

disasters, system failures, and disruption by human hands 

(World Economic Forum, 2024). CIS complexity and 

interdependence increases the impact of any disruption, 

and it tends to become a cascading failure in more than one 

sector (Rinaldi, Peerenboom, & Kelly, 2022). Considering 

this vulnerability, predictive vulnerability assessment and 

sound risk prioritisation have become essentials in 

addressing infrastructure resilience (Linkov et al., 2021). 

Despite the usefulness of traditional means of risk 

assessment, they tend to underrepresent the dynamic and 

changing nature of contemporary threats (Alderson, 
Brown, & Carlyle, 2022). Their ability to provide 

proactive and responsive solutions is frequently limited by 

rigid modelling, slow response mechanisms and poor 

integration of real time information (Kott & Linkov, 

2019). In this respect, Artificial Intelligence (AI) is a 

promising paradigm shift (Javaid, Haleem, & Singh, 

2023). Being able to handle large and diverse datasets, 

identify latent patterns, and predict areas of potential 

vulnerability, AI can contribute significantly to predictive 

assessment and prioritisation of risks (Yeboah-Ofori, 

Islam, & Lee, 2021). Combining machine learning, deep 

learning, and decision-support mechanisms, AI has the 

potential to make CIS risk management a proactive, 

adaptive system, rather than a reactive process. 

 

This conceptual review aims to conduct a synthesis 

of the body of current theories, models, and methods that 

support vulnerability assessment and risk prioritisation 

and outline gaps that lead to the creation of an efficient AI-

based framework. Likewise, by so doing, it offers a 

theoretical basis on which a new, proactive and smart 

framework of securing critical infrastructures can be built. 
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II. THEORETICAL FOUNDATIONS 
 

Structured theoretical models have long been used in 

risk management and vulnerability assessment to identify, 

analyse and mitigate threats within complex systems 

(Haimes, 2016). The most widespread among them is the 

Risk Management Framework (RMF), which offers 

systematic ways to categorise and assess the dangers and 

present the mechanisms of protection (Joint Task Force, 

2018). Within the framework of critical infrastructure 

system (CIS), the RMF allows for structured decisions, as 

such risk management is carried out in a proactive manner, 

due to continuous monitoring, rather than in the reactive 

manner (Schoitsch, 2020). Still, regarding the same matter, 

the Project Risk Analysis and Management (PRAM) 

model can also be considered as a lifecycle approach in 

which the identification of risks is followed by risk 

mitigation strategies and analysis (Hopkin, 2018). The two 

frameworks are similar in that they both require systematic 

assessment, prioritisation, and responsiveness, which is 

essential with highly interdependent infrastructures (Aven, 

2019). Another relevant conceptual framework that 

transcends risk avoidance to enable systems to absorb 

shocks, adapt and recover rapidly is the resilience theory 

(Hollnagel, Woods, & Leveson, 2006). This point of view 

is critical for CIS, in particular, where total risks cannot be 

removed (Linkov & Trump, 2019). Resilience theory 

promotes a balance between vulnerability decrease and 

adaptive capacity, so that decision-makers not only invest 

in robustness and recovery pathways, but also in 

preventive ones (Hosseini, Barker, & Ramirez-Marquez, 

2016). 

 

These models have structured foundations but in 

many cases, are limited by static methodologies and 

limited ability to predict (Zio, 2018). It is here that the 

transformational potential of Artificial Intelligence and 

Machine Learning (AI/ML) techniques can be found 

(Yuan, Li, & Wang, 2023). AI has the potential to upgrade 

old structures and add dynamic learning features, as it will 

enable systems to provide new risk evaluations according 

to the current state. Machine learning algorithms are able 

to identify changing patterns of threats, and deep learning 

models can identify covert vulnerabilities in complex 

interdependencies (Yeboah-Ofori et al., 2021). With the 

implementation of AI into the frameworks of RMF, 

PRAM, and resilience, CIS decision-making will become 

more forward-looking and proactive instead of 

retrospective (Kott & Linkov, 2019). In practice, AI 

develops the theoretical ideas of risk management and 

forms hybrid strategies, systematic framework, and 

adaptive intelligence (Javaid et al., 2023). 

 

III. CRITICAL INFRASTRUCTURE 

VULNERABILITIES 
 

Critical Infrastructure Systems (CIS) are vulnerable 

to a variety of threats posed by natural and manmade risks 
(World Economic Forum, 2024). Cybersecurity threats 

have become a dominant issue, and the growing 

digitisation exposes infrastructures to malware, 

ransomware and advanced persistent threats. Physical 

attacks, e.g. sabotage or terrorism, are still acute, 

especially in the transport and energy industry where 

interruption can put the whole economy on its knees 

(Lewis, 2019). Further, natural disasters, like floods, 

earthquakes, and storms, remain a risk to physical assets 

and they are more likely to multiply risks, by affecting 

power, communications, and emergency responses 

simultaneously (Linkov, Trump, Golan, & Keisler, 2021). 

The second area of increasing vulnerability is system 

interdependencies; a breakdown in one system component 

can cause a series of system failures in different industries, 

including healthcare, water supply, and finance (Rinaldi, 

Peerenboom, & Kelly, 2022). The difficulty in identifying, 

determining and prioritising these risks is enormous. 

Conventional surveillance systems tend to work in their 

own rooms, where there is little data exchange among the 

sectors, and situational awareness remains fractured (Kott 

& Linkov, 2019). Moreover, traditional risk evaluation is 

more likely to be based on the past and probabilistic 

scenarios that are unlikely to reflect emerging or fast 

changing threats (Zio, 2018). This establishes a gap 

between the identification of a risk and its treatment, 

which can be disastrous in situations with high stakes 

(Alderson, Brown, & Carlyle, 2022). 

 

Ranking the risks is also a problem. The conventional 

techniques are considered to utilize subjective scoring or 

non-moving matrices which fails to reflect the dynamic 

relationship in CIS (Aven, 2019). An example of this is 

that a moderate risk in an energy system can, together with 

the weaknesses of communication networks, lead to a 

national emergency (Rinaldi et al., 2022). Such system 

dynamics are seldom reflected in traditional models. 

Artificial Intelligence can overcome the limitations and 

apply predictive analytics to use diverse, real-time data 

sets to expose unknown vulnerabilities (Yeboah-Ofori, 

Islam, & Lee, 2021). However, until these AI-enabled 

strategies are fully operationalised, CIS will still be 

vulnerable to dangers that can only be forecasted or 

prioritised ineffectively using traditional methods (Javaid, 

Haleem, & Singh, 2023). 

 

IV. AI IN RISK ASSESSMENT AND 

PREDICTIVE MODELLING 

 

Artificial Intelligence (AI) has emerged as a 

powerful facilitator of predictive risk analysis of complex 

systems that extend beyond the limitations of traditional 

methods (Yuan, Li, & Wang, 2023). Decision trees and 

support vector machines are machine learning (ML) 

algorithms that are frequently used to categorize 

vulnerability and estimate system failure risks (Sarker, 

2021). Deep learning (DL) builds upon this capability to 

process large and unstructured data streams, such as sensor 

feeds or network traffic, to find patterns that a human 

analyst would fail to spot (Goodfellow, Bengio, & 

Courville, 2016). Reinforcement learning (RL) can be 

useful specifically in dynamic environments, where it 
allows the adaptation to the learning process with 

feedback, with the goal of optimising response strategies 

in real time (Sutton & Barto, 2018). In a similar manner, 

fuzzy logic systems can be used to effectively address the 
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uncertainties that are part of the risk assessment approach, 

and expert systems are used to simulate human decision 

making in order to give systematic recommendations to 

neutralize the threat (Tzafestas, 2020). Such methods have 

already proven to be successful in other fields. ML 

algorithms are used in cybersecurity to predict the 

presence of an intrusion attempt with high accuracy 

(Khraisat, Gondal, Vamplew, & Kamruzzaman, 2019), 

whereas DL models identify anomalous network 

behaviour in real time (Yeboah-Ofori et al., 2021). In the 

energy industry, AI is used to predict failures of equipment 

and manage loads efficiently during threat situations 

(Bennett & Stephens, 2023). Predictive analytics are used 

in transport to improve the resilience of infrastructure by 

simulating zones with the highest accident rates and 

probability of a failure (Thakur, Malekian, & Bogatinoska, 

2017). AI is used in healthcare to help identify the 

vulnerability of the system by identifying possible system 

bottlenecks in emergency preparedness (Aceto, Persico, & 

Pescapé, 2020). 

 

However, all these successes are tainted with a few 

serious limitations. Scalability is another issue, since 

models trained on certain datasets generally fail to 

generalise on many different infrastructures (Arrieta et al., 

2020). Another important issue is interpretability: high-

stakes CIS decision-makers might be unwilling to adopt 

black-box AI models the predictions of which are not 

transparent (Adadi & Berrada, 2018). Real-time flexibility 

is also problematic and models have been shown to lag in 

threat environments that rapidly change (Yuan et al., 

2023). Such loopholes highlight the necessity of more 

hybrid AI-based systems integrating predictive accuracy 

with transparency, flexibility, and cross-domain usability 

which is exactly what the current study seeks to achieve. 

 

V. RISK PRIORITISATION APPROACHES 
 

Risk management of critical infrastructure requires 

not just vulnerabilities to be identified, but prioritisation of 

the vulnerabilities based on urgency and potential impact 

(Aven, 2019). The conventional methods of risk 

prioritisation generally use quantitative risk scoring, where 

risk is prioritised according to measures of likelihood and 

severity (Haimes, 2016). Probabilistic models also 

generalize this by providing estimates of probabilities of 

adverse events, and in many cases using statistical 

distributions to provide predictions (Zio, 2018). Another 

approach that has gained popularity is multi-criteria 

decision analysis (MCDA) in which risk is weighted 

against other factors, such as cost, impact on society and 

system resilience (Linkov & Moberg, 2011). These 

methods offer organised forms of prioritisation, although 

they lose their value in very complex interdependent 

settings (Rinaldi, Peerenboom, & Kelly, 2022). The 

weaknesses of conventional approaches are in their 

inability to move over time and in their use of simplistic 

assumptions (Alderson, Brown, & Carlyle, 2022). 
Quantitative scoring can tend to overly simplify risk 

assessment by simply grading risks according to inflexible 

numerical scales without reflecting interdependencies or 

cascading effects among infrastructure sectors (Kott & 

Linkov, 2019). More advanced, probabilistic models still 

are constrained by past data which might not capture 

emerging or new threats (Zio, 2018). In a similar way, 

MCDA can be very much subjective in nature, in that the 

weight attributed to individual criteria may be based on a 

human judgement instead of objective analysis (Ishizaka 

& Nemery, 2013). These disadvantages make traditional 

prioritisation methods ineffective to transform networked 

CIS environments (Yuan, Li, & Wang, 2023). 

 

AI-based predictive analytics will offer an avenue to 

address these shortcomings (Javaid, Haleem, & Singh, 

2023). Through the analysis of various types of data, 

including sensor data and cyber logs, AI models can 

dynamically change their prioritisation based on changing 

risk profiles (Yeboah-Ofori, Islam, & Lee, 2021). Because 

AI has the capability to model both direct and indirect 

effects, it can help identify systemic weaknesses, which 

would not otherwise be visible in a static model (Thakur, 

Malekian, & Bogatinoska, 2017). Beyond that, hybrid 

cycles that integrate ML and decision-support systems 

enhance transparency and augment scalability across 

domains (Arrieta et al., 2020). By doing so, AI can help 

turn risk prioritisation into a dynamic, data-driven 

approach that is based on the real complexity of critical 

infrastructures and is no longer a subjective and static 

process. 

 

VI. SYNTHESIS AND IDENTIFIED GAPS 
 

The above overview of theoretical backgrounds, 

vulnerabilities of critical infrastructure systems (CIS), uses 

of artificial intelligence (AI), and the current risk 

prioritisation strategies identifies the advances achieved 

and the gaps that still remain in the current body of 

literature. Rational approaches such as Risk Management 

Framework (RMF), PRAM and resilience theory provide 

a methodical baseline around which decisions are made 

but still restricted by inflexible methodological approaches 

to the dynamic nature of modern threats (Kott & Linkov, 

2019; Zio, 2018). Likewise, although risk prioritisation 

techniques such as probabilistic models and multi-criteria 

decision analysis can provide effective ranking 

mechanisms, they cannot compete with complex 

interrelationships and cascading failure that are the 

hallmarks of CIS (Rinaldi et al., 2022; Alderson et al., 

2022). AI-based techniques offer significant innovations, 

as they allow predictive vulnerability analysis and 

anomaly detection and adaptive learning in areas like 

cybersecurity, energy, transport, and healthcare (Sarker, 

2021; Yeboah-Ofori et al., 2021). Nevertheless, such 

applications have not been developed as interfaces across 

infrastructures, but as sector-specific applications (Bennett 

& Stephens, 2023). Moreover, most AI versions are 

affected by scalability, interpretability, and real-time 

threat adaptation issues (Arrieta et al., 2020; Yuan et al., 

2023). Deep learning is not a transparent black box and is 

therefore harder to have trust in in a high stakes context 
(Adadi & Berrada, 2018), and reinforcement learning 

algorithms often require controlled conditions that are not 

easily available in critical infrastructure (Sutton & Barto, 

2018). The missing thing, then, is a converged, cross-
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domain framework integrating the systematic organization 

of traditional risk management with the dynamical 

learning ability of AI (Javaid et al., 2023). Such a 

framework should be built to incorporate several sources 

of data, offer clear and understandable outputs, prioritize 

risks in real time, and address systemic interdependencies 

across infrastructure sectors (Linkov, Trump, Golan, & 

Keisler, 2021). The need to fill these gaps makes it 

reasonable to develop an AI-based conceptual framework 

that is predictive, flexible, and decision-oriented. This 

framework aims to go beyond siloed applications by 

providing an integrated and intelligent vulnerability 

assessment and risk prioritisation system in critical 

infrastructures. 

 

 Conceptual Framework Development 
 

Table 1 Conceptual Framework Development 

Component Description How It Addresses Gaps 

Data Sources Multi-layered inputs including sensor data, 

network logs, environmental data, and 

historical incident records. 

Enhances cross-domain applicability by 

integrating heterogeneous datasets for 

holistic risk assessment. 

AI Models Hybrid use of machine learning, deep 

learning, reinforcement learning, and fuzzy 

logic. 

Enables predictive accuracy, real-time 

adaptability, and management of 

uncertainties. 

Risk Scoring Mechanism Dynamic, AI-enhanced scoring system that 

accounts for likelihood, severity, and 

cascading interdependencies. 

Moves beyond static quantitative models, 

providing context-aware prioritisation of 

risks. 

Decision-Support System Visual dashboards and explainable AI tools 

that communicate risk levels and 

recommendations to stakeholders. 

Improves interpretability, trust, and 

actionable insights for decision-makers. 

Feedback and Learning Loop Continuous monitoring and updating of 

models based on new threats and outcomes. 

Ensures adaptability and resilience against 

evolving, real-time vulnerabilities. 

 

This model combines systematic risk management 

values and dynamic AI functions. Its decision-support 

system assists in bridging the gap between advanced AI 

outputs and the real decision-making process by 

integrating predictive analytics into an iterative feedback 

loop and transforming vulnerability assessments into a 

dynamically changing process. In this manner, it provides 

a unified and open-ended solution to the dynamics of the 

contemporary CIS. 

 

VII. IMPLICATIONS FOR RESEARCH AND 

PRACTICE 
 

The contribution of this framework is theoretical 

because the paper presents AI integrated into the resilience 

model and risk management models to assess risks and 

provide a dynamic and multi-domain approach to risk 

assessment. In practice, it allows greater anticipatory 

accuracy, prioritisation of risks, and proactive robustness 

in basic infrastructures based on real-time, data-driven 

decisions. In the context of future studies, robustness has 

to be tested empirically using sector-specific data. It must 

also have cross-sector applications and fit to national 

policy frameworks to enable scalability, accountability 

and institutional adoption to render the framework 

scholarly and transformationally useful. 

 

VIII. CONCLUSION 
 

The study has identified the weaknesses of 

conventional risk assessment frameworks, industry-

specific AI implementations, and fixed prioritisation 
approaches to the full range of critical infrastructure risks. 

The suggested AI-based architecture helps fill these gaps 

and consider adaptive learning, transparency, and cross-

domain applicability. Predictive and decision-support 

capabilities make it possible to build resilience 

dynamically in high-stakes settings. The framework does 

not only enrich the academic knowledge, but offers the 

platform through which academic knowledge can be 

empirically affirmed and operationalized, and ultimately 

render critical infrastructures immune to evolving 

vulnerabilities and systemic perturbations. 

 

RECOMMENDATIONS 
 

It also represents a supposed sign that scholars are 

expected to dedicate their attraction in the delivery of the 

empirical validation of the framework in multiple 

infrastructure sectors to award accountability and 

scalability. The national risk management strategies 

should include AI-based tools to allow policymakers to 

focus on resilience planning. Practitioners will implement 

explainable AI mechanisms as a way to improve 

transparency and foster trust among interested parties. 

Academia, industry and government now need to come 

together and hone the framework and make it 

internationalisation friendly and sensitive to emerging 

threats in an increasingly globalised and digitalised world. 
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