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Abstract

Modern societies are based on Critical Infrastructure Systems (CIS) which are becoming more susceptible to attacks by cyber-
criminals, brute force, natural calamities and system interdependencies. Classical risk management models like the RMF and
PRAM have some formal guidelines but are faced with the fact that it is impossible to manage dynamic and volatile threats
since they are by definition siloed and emergent. Recent developments in Artificial Intelligence (Al) provide a new
opportunity to assess potential vulnerabilities and prioritize risks in a predictive manner, but the current applications are
usually sector-specific, have low scalability, and lack interpretability and real-time adaptability. The current paper is a
conceptual review that combines the theory of risk management, the literature on the assessment of vulnerability, and the
application of Al in various fields. It also introduces some important gaps in the existing literature, such as the lack of coherent
frameworks, as well as, the lack of discussion of domain-wide interdependencies. The study, in turn, proposes a new Al-based
framework that includes data integration based on multiple sources, hybrid Al modelling, dynamic risk scoring, decision-
support tools, and feedback loops. The framework helps to develop the theory of Al-based risk management and provides
realistic directions to enhance predictive accuracy, prioritisation, and resilience in CIS. It also preconditions future empirical
confirmation and application of policy.
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I INTRODUCTION

Critical Infrastructure Systems (CIS) are the
mainstay of present societies, including the energy sector,
transport sector, water sector, telecommunication sector,
and healthcare section (Bennett & Stephens, 2023). They
are free flowing and their smooth running is the foundation
of national security, economic stability, and public safety
(Lewis, 2019). Yet, these systems are becoming more
susceptible to various threats such as cyber-attacks, natural
disasters, system failures, and disruption by human hands
(World Economic Forum, 2024). CIS complexity and
interdependence increases the impact of any disruption,
and it tends to become a cascading failure in more than one
sector (Rinaldi, Peerenboom, & Kelly, 2022). Considering
this vulnerability, predictive vulnerability assessment and
sound risk prioritisation have become essentials in
addressing infrastructure resilience (Linkov et al., 2021).
Despite the usefulness of traditional means of risk
assessment, they tend to underrepresent the dynamic and
changing nature of contemporary threats (Alderson,
Brown, & Carlyle, 2022). Their ability to provide

proactive and responsive solutions is frequently limited by
rigid modelling, slow response mechanisms and poor
integration of real time information (Kott & Linkov,
2019). In this respect, Artificial Intelligence (Al) is a
promising paradigm shift (Javaid, Haleem, & Singh,
2023). Being able to handle large and diverse datasets,
identify latent patterns, and predict areas of potential
vulnerability, Al can contribute significantly to predictive
assessment and prioritisation of risks (Yeboah-Ofori,
Islam, & Lee, 2021). Combining machine learning, deep
learning, and decision-support mechanisms, Al has the
potential to make CIS risk management a proactive,
adaptive system, rather than a reactive process.

This conceptual review aims to conduct a synthesis
of the body of current theories, models, and methods that
support vulnerability assessment and risk prioritisation
and outline gaps that lead to the creation of an efficient Al-
based framework. Likewise, by so doing, it offers a
theoretical basis on which a new, proactive and smart
framework of securing critical infrastructures can be built.
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1. THEORETICAL FOUNDATIONS

Structured theoretical models have long been used in
risk management and vulnerability assessment to identify,
analyse and mitigate threats within complex systems
(Haimes, 2016). The most widespread among them is the
Risk Management Framework (RMF), which offers
systematic ways to categorise and assess the dangers and
present the mechanisms of protection (Joint Task Force,
2018). Within the framework of critical infrastructure
system (CIS), the RMF allows for structured decisions, as
such risk management is carried out in a proactive manner,
due to continuous monitoring, rather than in the reactive
manner (Schoitsch, 2020). Still, regarding the same matter,
the Project Risk Analysis and Management (PRAM)
model can also be considered as a lifecycle approach in
which the identification of risks is followed by risk
mitigation strategies and analysis (Hopkin, 2018). The two
frameworks are similar in that they both require systematic
assessment, prioritisation, and responsiveness, which is
essential with highly interdependent infrastructures (Aven,
2019). Another relevant conceptual framework that
transcends risk avoidance to enable systems to absorb
shocks, adapt and recover rapidly is the resilience theory
(Hollnagel, Woods, & Leveson, 2006). This point of view
is critical for CIS, in particular, where total risks cannot be
removed (Linkov & Trump, 2019). Resilience theory
promotes a balance between vulnerability decrease and
adaptive capacity, so that decision-makers not only invest
in robustness and recovery pathways, but also in
preventive ones (Hosseini, Barker, & Ramirez-Marquez,
2016).

These models have structured foundations but in
many cases, are limited by static methodologies and
limited ability to predict (Zio, 2018). It is here that the
transformational potential of Artificial Intelligence and
Machine Learning (AI/ML) techniques can be found
(Yuan, Li, & Wang, 2023). Al has the potential to upgrade
old structures and add dynamic learning features, as it will
enable systems to provide new risk evaluations according
to the current state. Machine learning algorithms are able
to identify changing patterns of threats, and deep learning
models can identify covert vulnerabilities in complex
interdependencies (Yeboah-Ofori et al., 2021). With the
implementation of Al into the frameworks of RMF,
PRAM, and resilience, CIS decision-making will become
more forward-looking and proactive instead of
retrospective (Kott & Linkov, 2019). In practice, Al
develops the theoretical ideas of risk management and
forms hybrid strategies, systematic framework, and
adaptive intelligence (Javaid et al., 2023).

1. CRITICAL INFRASTRUCTURE
VULNERABILITIES

Critical Infrastructure Systems (CIS) are vulnerable
to a variety of threats posed by natural and manmade risks
(World Economic Forum, 2024). Cybersecurity threats
have become a dominant issue, and the growing
digitisation  exposes infrastructures to malware,
ransomware and advanced persistent threats. Physical

attacks, e.g. sabotage or terrorism, are still acute,
especially in the transport and energy industry where
interruption can put the whole economy on its knees
(Lewis, 2019). Further, natural disasters, like floods,
earthquakes, and storms, remain a risk to physical assets
and they are more likely to multiply risks, by affecting
power, communications, and emergency responses
simultaneously (Linkov, Trump, Golan, & Keisler, 2021).
The second area of increasing vulnerability is system
interdependencies; a breakdown in one system component
can cause a series of system failures in different industries,
including healthcare, water supply, and finance (Rinaldi,
Peerenboom, & Kelly, 2022). The difficulty in identifying,
determining and prioritising these risks is enormous.
Conventional surveillance systems tend to work in their
own rooms, where there is little data exchange among the
sectors, and situational awareness remains fractured (Kott
& Linkov, 2019). Moreover, traditional risk evaluation is
more likely to be based on the past and probabilistic
scenarios that are unlikely to reflect emerging or fast
changing threats (Zio, 2018). This establishes a gap
between the identification of a risk and its treatment,
which can be disastrous in situations with high stakes
(Alderson, Brown, & Carlyle, 2022).

Ranking the risks is also a problem. The conventional
techniques are considered to utilize subjective scoring or
non-moving matrices which fails to reflect the dynamic
relationship in CIS (Aven, 2019). An example of this is
that a moderate risk in an energy system can, together with
the weaknesses of communication networks, lead to a
national emergency (Rinaldi et al., 2022). Such system
dynamics are seldom reflected in traditional models.
Artificial Intelligence can overcome the limitations and
apply predictive analytics to use diverse, real-time data
sets to expose unknown vulnerabilities (Yeboah-Ofori,
Islam, & Lee, 2021). However, until these Al-enabled
strategies are fully operationalised, CIS will still be
vulnerable to dangers that can only be forecasted or
prioritised ineffectively using traditional methods (Javaid,
Haleem, & Singh, 2023).

V. Al IN RISK ASSESSMENT AND
PREDICTIVE MODELLING

Artificial Intelligence (Al) has emerged as a
powerful facilitator of predictive risk analysis of complex
systems that extend beyond the limitations of traditional
methods (Yuan, Li, & Wang, 2023). Decision trees and
support vector machines are machine learning (ML)
algorithms that are frequently used to categorize
vulnerability and estimate system failure risks (Sarker,
2021). Deep learning (DL) builds upon this capability to
process large and unstructured data streams, such as sensor
feeds or network traffic, to find patterns that a human
analyst would fail to spot (Goodfellow, Bengio, &
Courville, 2016). Reinforcement learning (RL) can be
useful specifically in dynamic environments, where it
allows the adaptation to the learning process with
feedback, with the goal of optimising response strategies
in real time (Sutton & Barto, 2018). In a similar manner,
fuzzy logic systems can be used to effectively address the
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uncertainties that are part of the risk assessment approach,
and expert systems are used to simulate human decision
making in order to give systematic recommendations to
neutralize the threat (Tzafestas, 2020). Such methods have
already proven to be successful in other fields. ML
algorithms are used in cybersecurity to predict the
presence of an intrusion attempt with high accuracy
(Khraisat, Gondal, Vamplew, & Kamruzzaman, 2019),
whereas DL models identify anomalous network
behaviour in real time (Yeboah-Ofori et al., 2021). In the
energy industry, Al is used to predict failures of equipment
and manage loads efficiently during threat situations
(Bennett & Stephens, 2023). Predictive analytics are used
in transport to improve the resilience of infrastructure by
simulating zones with the highest accident rates and
probability of a failure (Thakur, Malekian, & Bogatinoska,
2017). Al is used in healthcare to help identify the
vulnerability of the system by identifying possible system
bottlenecks in emergency preparedness (Aceto, Persico, &
Pescapé, 2020).

However, all these successes are tainted with a few
serious limitations. Scalability is another issue, since
models trained on certain datasets generally fail to
generalise on many different infrastructures (Arrieta et al.,
2020). Another important issue is interpretability: high-
stakes CIS decision-makers might be unwilling to adopt
black-box Al models the predictions of which are not
transparent (Adadi & Berrada, 2018). Real-time flexibility
is also problematic and models have been shown to lag in
threat environments that rapidly change (Yuan et al.,
2023). Such loopholes highlight the necessity of more
hybrid Al-based systems integrating predictive accuracy
with transparency, flexibility, and cross-domain usability
which is exactly what the current study seeks to achieve.

V. RISK PRIORITISATION APPROACHES

Risk management of critical infrastructure requires
not just vulnerabilities to be identified, but prioritisation of
the vulnerabilities based on urgency and potential impact
(Aven, 2019). The conventional methods of risk
prioritisation generally use quantitative risk scoring, where
risk is prioritised according to measures of likelihood and
severity (Haimes, 2016). Probabilistic models also
generalize this by providing estimates of probabilities of
adverse events, and in many cases using statistical
distributions to provide predictions (Zio, 2018). Another
approach that has gained popularity is multi-criteria
decision analysis (MCDA) in which risk is weighted
against other factors, such as cost, impact on society and
system resilience (Linkov & Moberg, 2011). These
methods offer organised forms of prioritisation, although
they lose their value in very complex interdependent
settings (Rinaldi, Peerenboom, & Kelly, 2022). The
weaknesses of conventional approaches are in their
inability to move over time and in their use of simplistic
assumptions (Alderson, Brown, & Carlyle, 2022).
Quantitative scoring can tend to overly simplify risk
assessment by simply grading risks according to inflexible
numerical scales without reflecting interdependencies or
cascading effects among infrastructure sectors (Kott &

Linkov, 2019). More advanced, probabilistic models still
are constrained by past data which might not capture
emerging or new threats (Zio, 2018). In a similar way,
MCDA can be very much subjective in nature, in that the
weight attributed to individual criteria may be based on a
human judgement instead of objective analysis (Ishizaka
& Nemery, 2013). These disadvantages make traditional
prioritisation methods ineffective to transform networked
CIS environments (Yuan, Li, & Wang, 2023).

Al-based predictive analytics will offer an avenue to
address these shortcomings (Javaid, Haleem, & Singh,
2023). Through the analysis of various types of data,
including sensor data and cyber logs, Al models can
dynamically change their prioritisation based on changing
risk profiles (Yeboah-Ofori, Islam, & Lee, 2021). Because
Al has the capability to model both direct and indirect
effects, it can help identify systemic weaknesses, which
would not otherwise be visible in a static model (Thakur,
Malekian, & Bogatinoska, 2017). Beyond that, hybrid
cycles that integrate ML and decision-support systems
enhance transparency and augment scalability across
domains (Arrieta et al., 2020). By doing so, Al can help
turn risk prioritisation into a dynamic, data-driven
approach that is based on the real complexity of critical
infrastructures and is no longer a subjective and static
process.

VI. SYNTHESIS AND IDENTIFIED GAPS

The above overview of theoretical backgrounds,
vulnerabilities of critical infrastructure systems (CIS), uses
of artificial intelligence (Al), and the current risk
prioritisation strategies identifies the advances achieved
and the gaps that still remain in the current body of
literature. Rational approaches such as Risk Management
Framework (RMF), PRAM and resilience theory provide
a methodical baseline around which decisions are made
but still restricted by inflexible methodological approaches
to the dynamic nature of modern threats (Kott & Linkov,
2019; Zio, 2018). Likewise, although risk prioritisation
techniques such as probabilistic models and multi-criteria
decision analysis can provide effective ranking
mechanisms, they cannot compete with complex
interrelationships and cascading failure that are the
hallmarks of CIS (Rinaldi et al., 2022; Alderson et al.,
2022). Al-based techniques offer significant innovations,
as they allow predictive vulnerability analysis and
anomaly detection and adaptive learning in areas like
cybersecurity, energy, transport, and healthcare (Sarker,
2021; Yeboah-Ofori et al.,, 2021). Nevertheless, such
applications have not been developed as interfaces across
infrastructures, but as sector-specific applications (Bennett
& Stephens, 2023). Moreover, most Al versions are
affected by scalability, interpretability, and real-time
threat adaptation issues (Arrieta et al., 2020; Yuan et al.,
2023). Deep learning is not a transparent black box and is
therefore harder to have trust in in a high stakes context
(Adadi & Berrada, 2018), and reinforcement learning
algorithms often require controlled conditions that are not
easily available in critical infrastructure (Sutton & Barto,
2018). The missing thing, then, is a converged, cross-
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domain framework integrating the systematic organization
of traditional risk management with the dynamical
learning ability of Al (Javaid et al., 2023). Such a
framework should be built to incorporate several sources
of data, offer clear and understandable outputs, prioritize
risks in real time, and address systemic interdependencies
across infrastructure sectors (Linkov, Trump, Golan, &
Keisler, 2021). The need to fill these gaps makes it

reasonable to develop an Al-based conceptual framework
that is predictive, flexible, and decision-oriented. This
framework aims to go beyond siloed applications by
providing an integrated and intelligent vulnerability
assessment and risk prioritisation system in critical
infrastructures.

» Conceptual Framework Development

Table 1 Conceptual Framework Development

Component

Description

How It Addresses Gaps

Data Sources

Multi-layered inputs including sensor data,
network logs, environmental data, and
historical incident records.

Enhances cross-domain applicability by
integrating heterogeneous datasets for
holistic risk assessment.

Al Models

Hybrid use of machine learning, deep
learning, reinforcement learning, and fuzzy
logic.

Enables predictive accuracy, real-time
adaptability, and management of
uncertainties.

Risk Scoring Mechanism

Dynamic, Al-enhanced scoring system that
accounts for likelihood, severity, and
cascading interdependencies.

Moves beyond static quantitative models,
providing context-aware prioritisation of
risks.

Decision-Support System

Visual dashboards and explainable Al tools
that communicate risk levels and
recommendations to stakeholders.

Improves interpretability, trust, and
actionable insights for decision-makers.

Feedback and Learning Loop

Continuous monitoring and updating of
models based on new threats and outcomes.

Ensures adaptability and resilience against
evolving, real-time vulnerabilities.

This model combines systematic risk management
values and dynamic Al functions. Its decision-support
system assists in bridging the gap between advanced Al
outputs and the real decision-making process by
integrating predictive analytics into an iterative feedback
loop and transforming vulnerability assessments into a
dynamically changing process. In this manner, it provides
a unified and open-ended solution to the dynamics of the
contemporary CIS.

VIL. IMPLICATIONS FOR RESEARCH AND

PRACTICE

The contribution of this framework is theoretical
because the paper presents Al integrated into the resilience
model and risk management models to assess risks and
provide a dynamic and multi-domain approach to risk
assessment. In practice, it allows greater anticipatory
accuracy, prioritisation of risks, and proactive robustness
in basic infrastructures based on real-time, data-driven
decisions. In the context of future studies, robustness has
to be tested empirically using sector-specific data. It must
also have cross-sector applications and fit to national
policy frameworks to enable scalability, accountability
and institutional adoption to render the framework
scholarly and transformationally useful.

VIII. CONCLUSION

The study has identified the weaknesses of
conventional risk assessment frameworks, industry-
specific Al implementations, and fixed prioritisation
approaches to the full range of critical infrastructure risks.
The suggested Al-based architecture helps fill these gaps
and consider adaptive learning, transparency, and cross-
domain applicability. Predictive and decision-support

capabilities make it possible to build resilience
dynamically in high-stakes settings. The framework does
not only enrich the academic knowledge, but offers the
platform through which academic knowledge can be
empirically affirmed and operationalized, and ultimately
render critical infrastructures immune to evolving
vulnerabilities and systemic perturbations.

RECOMMENDATIONS

It also represents a supposed sign that scholars are
expected to dedicate their attraction in the delivery of the
empirical validation of the framework in multiple
infrastructure sectors to award accountability and
scalability. The national risk management strategies
should include Al-based tools to allow policymakers to
focus on resilience planning. Practitioners will implement
explainable Al mechanisms as a way to improve
transparency and foster trust among interested parties.
Academia, industry and government now need to come
together and hone the framework and make it
internationalisation friendly and sensitive to emerging
threats in an increasingly globalised and digitalised world.
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