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Abstract

The synthesised findings of five recent studies on the implementation of deep learning (DL) models to achieve adaptive
malware classification and behavioural threat analysis in dynamic cyber environments are presented in this empirical review.
The reviewed research shows that DL methods, convolutional neural networks (CNNSs), recurrent neural networks (RNNs),
transformers, and hybrid approaches are significantly more efficient tools in terms of accuracy, feature extraction, and
adaptation to the complexity of malware behaviors than traditional machine learning methods. Hybrid models that merge
supervised, unsupervised, and federated learning are even better at improving the scalability and privacy preservation. Despite
these developments, several challenges persist, including high computational costs, limited access to high-quality labeled
data, susceptibility to adversarial attacks, the need for explainability, and the incorporation of these systems into real-world
settings. Research gaps were noted in creating lightweight 10T and edge computing systems, adversarially robust DL models,
explainable Al, and continual learning systems. The article review generally confirms the instrumental role of DL in
developing adaptive cybersecurity strategies, emphasizing the need for innovative, interdisciplinary, and practical
implementations that match the sophistication and practicality required in a dynamic digital environment.
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I INTRODUCTION

The issue of high-speed cyber threats increases the
challenge of digital security systems, which have to face
new and advanced methods of detection by malicious
actors (Okoli et al., 2024). In more detail, the malware has
become more flexible, exploiting such distributed systems
as cloud, edge, and 10T (Gulatas et al., 2023). Zero-day
attacks and polymorphic malware cannot always be
detected using conventional signature-based and heuristic
techniques. Actually, the industry demands more dynamic
and intelligent methods of threat analysis (Kaur & Singh,
2014). Deeper learning has come to be recognised as an
innovative mechanism in cybersecurity with improved
functions in malware classification and behavioural threat
analysis (Okoli et al., 2024). Its potential to auto learn
complex patterns in high-dimensional data makes it well
applicable to inherent subtle anomalies in static feature
sets, dynamic feature sets, as well as hybrid feature sets. In
contrast to classic machine learning, deep learning is less
dependent on manual features and more flexible in terms
of recognizing patterns and adaptability--in particular, it
can facilitate real-time adaptations to new adversarial

strategies and maintain resilience. As a result, the use of
CNNs, RNNs, transformers, and hybrids has become the
subject of increased research (Alomar, Aysel & Cai,
2024).

The purpose of this review is to examine empirical
evidence from recent studies on the deployment of deep
learning models for adaptive malware classification and
behavioural threat analysis. The scope covers five selected
studies published between 2024 and 2025, which
collectively investigate diverse methodologies, datasets,
and applications. These studies encompass hybrid learning
models, adversarial resilience, federated approaches, and
large-scale empirical testing in distributed systems. By
synthesising their findings, the review highlights
performance outcomes, key contributions, limitations, and
research gaps, thereby providing insight into the evolving
role of deep learning in strengthening cybersecurity.

1. REVIEW METHODOLOGY

This review draws on five peer-reviewed studies
published between 2024 and 2025, sourced from reputable
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journals and research repositories such as the World
Journal of Advanced Research and Reviews, Frontiers in
Physics, and ResearchGate. The selection process focused
on works that presented empirical investigations or
systematic analyses of deep learning models for malware
classification and behavioural threat detection. The
inclusion criteria required studies to (i) fall within the
2024-2025 timeframe, (ii) employ or review deep learning

evaluations using benchmark or real-world datasets.
Studies that were purely conceptual without reference to
empirical evidence, or outside the scope of cybersecurity
threat detection, were excluded. The resulting corpus
reflects a balance of experimental, hybrid, and review-
oriented research, thereby providing a comprehensive
foundation for synthesising empirical findings in evolving
cyber landscapes.

approaches such as CNNs, RNNs, hybrid and ensemble
methods, and (iii) report experimental results or detailed

» Summary of Characteristics of the Selected Studies

Table 1 Summary of Characteristics of the Selected Studies

#| Criterion Study 1 Study 2 Study 3 Study 4 Study 5

1 | Bibliograph Chukwuani et al. Karki et al. Sharma (2024). Redhu, A., Okafor, M.O.
ic Details (2025). Machine (n.d). Machine Learning- Choudhary, P., (2024). Deep

Learning Cybersecurity | Driven Approaches | Srinivasan, K., learning in
Techniques for with Deep for Contemporary | Das, T.K. (2024). cybersecurity:
Real-Time Malware Learning: Cybersecurity... Deep learning- Enhancing threat
Classification and Malware Nuvern Machine powered detection and

Threat Detection in Detection Learning Reviews. malware response.
Distributed through Real- detection in WIARR, 24(03),
Systems. World Time Pattern cyberspace: a 1116-1132.
Journal of Recognition... contemporary
Advanced Research | ResearchGate. review. Front.
and Reviews. Phys.
12:1349463.

2 | Obijective/ | Real-time malware Improve Survey ML in Review DL Explore DL
Research classification & malware intrusion detection, models for models (CNN,
Problem threat detection in detection with malware malware RNN, hybrids) in

distributed systems DL,; address classification, and detection; real-time
(10T, cloud, edge). evasion, real- incident response. identify detection; address
time pattern strengths, adversarial &
recognition, limitations, scalability issues.
collaborative future directions.
intelligence.
3 Dataset CICIDS, EMBER, Not explicitly Not specified; Not specified; CICIDS2017,
Used custom ICS logs. named; references public references CERT,
Features: hybrid grayscale datasets and real- Drebin, NSL- PhishTank.
(static, dynamic, images, byte world logs. KDD, 10T-23,
behavioral). sequences, API etc.
logs.

4 Deep Hybrid: RF, SVM, | CNN (images), CNN, RNN, RNNSs, DAEs, Hybrid CNN-
Learning GBM + CNN, RNN/LSTM autoencoders, LSTMs, DNNs, | RNN; adversarial
Model / LSTM, (sequences), ensembles, RL. DBNs, CNNs, training; gradient

Methodolog Transformer. hybrid; Supervised+unsupe Generative masking.
y Supervised+unsupe adversarial rvised+RL. Models, DRL,
rvised; federated training. Attention
learning. models.
5| Evaluation Accuracy>96%, CNN up to Not quantified; Acc, Prec, Rec, Acc, Prec, Rec,
Metrics & AUC=0.984, low 97.8%; LSTM qualitative F1, AUC, F1, AUC. Hybrid
Results FPR. 93.4%. DL > improvements Evasion. CNN: CNN-RNN:
ML. (fewer false 94-99%, Hybrid: | 96.8% vs CNN
positives, faster up to 99.9%. 95.6%

response). (CICIDS2017).

6 Key Hybrid models + DL > ML; ML enhances DL excels in Hybrid CNN-

Findings / federated learning hybrid & accuracy, reduces feature RNN captures
Contributio enable privacy- transfer manual effort, extraction, spatial &
ns preserving, scalable improve integrates threat adaptability, real- temporal
detection. robustness. intelligence. time detection; features;
hybrids improve adversarial
robustness. training improves
resilience.
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7 | Limitations Labeling Adversarial
Identified inconsistencies, vulnerability,
concept drift, computational
adversarial evasion, overhead,
high computational legacy
cost. integration,
explainability
gaps.

General survey— | Data imbalance, High
no specific interpretability, computational
limitations adversarial cost,
discussed. vulnerability, interpretability
scalability, issues,
deployment adversarial
challenges. attacks,

scalability at loT
edge, privacy
concerns.

» Empirical Evidence and Comparative Synthesis of
Deep Learning for Malware Classification and
Adaptive Threat Detection

Examples in the five selected works show
empirically that the field of deep learning has moved
beyond hype to actual tools of use in the malware
classification process when the model architecture is
adjusted appropriately based on feature modality and
constraints of deployment.

First, there are the approaches to static analysis,
where models take a target artefact, such as bytecode,
opcodes or PE-header characteristics. Karki et al. (n.d)
indicate comparatively high accuracies of convolutional
neural networks when either malware binaries are mapped
as grayscale images or the byte sequences are utilized as
such whereby the CNN can seek accuracies up to 97.8
percent equivalent to those of sequence-based LSTMs
which can reach 93.4 percent with identical input. This is
supported by Redhu et al. (2024), which summarises
numerous empirical studies reporting 94-99% by CNNs on
careful curated static datasets (e.g. Drebin-style datasets).
Although Sharma (2024) considers much wider range of
evidence, the qualitative evidence credits faster response
times and fewer false positives to deep models in which
representations learn directly on underneath the static
artefacts, limiting the use of the derailing handcrafted
features. This lack of sensitivity to additions and
packaging comes at the cost of brittleness to additions and
packaging, obscurity and concept drift: Static pipelines are
thus good at throughput and reproducibility and poor at
being sensitive to changes in additions and packaging.

"Moving to dynamic/behavioural analysis deep
sequence models capture time-based consistent patterns in
API (application programming interface) calls, system
calls, and the run-time interaction graph. Hukwuani et al.
(2025) combine behavioural telemetry via CICIDS,
EMBER and bespoke ICS logs, testing LSTMs,
Transformers and classical baselines; they achieve
prediction accuracy of over 96% and AUC = 0.984 with
low false-positive rates, indicating good discriminative
power in conditions where temporal context is used. Karki
et al. (2022) also note the effectiveness of the RNN/LSTM
models in the context of APl sequences and encourage the
use of adversarial training to strengthen behaviour-based
detectors against the ejection-based on feedback. The
results tabulated in Okafor (n.d), reveal that temporal
modelling does indeed matter in practice: the hybrid CNN-
RNN maodel achieves a higher result (96.8%) compared to
a pure CNN (95.6%) on CICIDS2017, when taken to

indicate the incremental usefulness of capturing both the
spatial and the temporal footprints of malicious activity.
Sharma (2024) additionally notes that behavioural models
tend to minimize false positives and indeed enjoy greater
flexibility and resilience towards zero-day behaviours
compared to purely static pipelines; but Karki et al. (n.d)
and Okafor (2024) warn that they present higher
computational and integration costs as well as decreased
resilience to conflicting or incompletely captured runtime
events.

The most consistent empirical indication throughout
the corpus is in hybrid and ensemble models, a
combination of static and dynamic features and / or deep
and classical learners. Hukwuani et al. (2025) merge RF,
SVM, GBM with CNNs, LSTMs, and Transformers in
both supervised and unsupervised environments and find
that feature-based fusion is more precise-recall-balanced,
whereas federated learning maintains privacy under
distributed environments. Reviewing hybrids that drive
overall scores to the highest end of the scale-up to 99.9
percent-Redhu et al. (2024) comment on how diversity
(both in features and architecture) helps diminish over-
fitting and enhance resistance to prevalent obfuscation
tactics. Okafor (2024) augments this by incorporating
adversarial training and gradient masking (with inference
in sparse settings), and this hybrid of CNN-RNN
architrave actually improves detection without incurring
an excessive latency cost in a strongly equipped
environment. The findings are that ensembles and hybrids
are always superior to single-modality models when tested
on mixed or heterogeneous telemetry but introduce a
complexity factor that casts doubts on the explainability
and operational cost.

The issue of non-stationarity of the malware
ecosystems is addressed explicitly in the empirical work
concerning adaptive and evolving threat detection.
Concept drift in distributed/loT/cloud/edge systems can be
addressed by use of federated learning, enabling to
continuously update the model with local data, yet not to
violate privacy: Hukwuani et al. (2025). Karki et al. (n.d)
place more emphasis on transfer learning, giving evidence
that pre-training on historic bigger language corpora, and
fine-tuning on latest samples, enhances generalisation to
new families and different forms. Redhu et al. (2024) also
point to the need of continual learning as the direction to
sustain the performance of the prolonged drift against the
adversarial pressure. Longitudinal testing is skewed:
CICIDS2017, CERT and PhishTank (Okafor, 2024)
provide base diversity, but neither Chukwuani et al (2025)
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custom logging of ICS logs nor use of multi-domain
telemetry can hope to match changed distributions faced
in production. Chukwuani et al. (2025) and Okafor, (2025)
are most concrete when it comes to fielding, framing the
challenge of real-time detection in distributed systems,
with Chukwuani et al. (2025) highlighting the need to do
so in a privacy-preserving way and Okafor, (2025)
considering limitations at both the loT edge (compute,
energy, latency) and requirements of adversarial
resilience.

A cross-analysis of the different datasets, metrics,
strengths, and limitations refines these cues. Datasets
include benchmark corpora (CICIDS, EMBER, Drebin,
NSL-KDD, 10T-23) and operational logs (ICS, CERT,
PhishTank), although Karki et al. (n.d), Sharma (2024),
and Redhu et al. (2024) occasionally cite them in non-
specific terms, rather than reporting specific sample sizes.
In cases where the metrics are available, we find Accuracy
> 96% and AUC = 0.984 on hybrid behavioural pipelines
(Chukwuani et al., 2025), CNN = 0.94-0.99 in a static
setting and hybrids up to 0.999 (Redhu et al., 2024), and
CNN-RNN 0.968 compared with CNN 0.956 on
CICIDS2017 (Okafor, 2024). As observed by Sharma
(2023), Karki et al. (n.d), the response is quicker and the
false positives are reduced, which corresponds with
reports on DL > ML baselines. Overall, the most
convincing empirical performances come through (i) high
accuracy of both static and behavioural features, (ii)
enhanced adaptability with the use of temporal/sequential
context, (iii) robustness through hybridisation and
adversarial training, and (iv) privacy-aware scaling using
federated learning in distributed environments.

In counterbalance, there are certain constraints to
external wvalidity and operationalisation recurrently.
Generalisation is challenged by bias and imbalance in the
datasets (Redhu et al., 2024) and inconsistencies in
labelling (Chukwuani et al., 2025) and a number of studies
report adversarial vulnerability after defensive training
(Karki et al., n.d; Redhu et al., 2024; Okafor, 2024).
Compute overhead and latency also throws a spanner in
the works in the loT/edge setting of deployment
(Chukwuani et al., 2025; Okafor, 2024), and legacy
compatibility and explainability gaps (Karki et al., n.d)
hinder adoption in the enterprise setting as well as post-
incident follow-up investigations. Concept drift is an
unsolved threat: although federated or transfer learning
can alleviate short-term robustness (Chukwuani et al.,
2025; Karki et al., n.d), there are few or no continuing,
updated benchmarks, and Sharma (2024) does not provide
quantified durability statements, in spite of her overall
positive survey position. Privacy and governance issues,
finally, become evident in issues of the privacy of
behavioural telemetry and how to preserve privacy on the
pathways through which models are updated.

Summarising the evidence, three applicable results
are presented. First, select the model that matches
modality: CNNs or autoencoders on high-throughput,
static screening; LSTMs/Transformers where sequential
behaviour is available and time restrictions allow. Second,

implement hybrid/ensemble pipelines in production to
prevent obfuscation and tooling changes; the quantifiable
improvements in AUC, F1 and false-positive control make
the extra complexity worth the effort in high-risk
circumstances. Third, plan to evolve: implement federated
and transfer learning now, and consider future continual
learning and routine drift audits over rolling windows of
data like CICIDS/CERT and, where possible, specialized
logs (e.g. ICS). In these papers, the inch in the empirical
performance of deep learning is apparent, but its long-term
lead lies in data governance, adversarial testing, and
lifecycle engineering nearly as much as in design decision.

CHALLENGES AND RESEARCH GAPS IN
EMPIRICAL STUDIES

Through the discussed papers, there are some
prevailing challenges that limit the complete
implementation of deep learning (DL) in the sub-domains
of malware classification and adaptive threat detection.
Prohibitive computational costs preclude use in IoT and
edge settings, and limited availability and finicky
annotations prevent generalisation. Behavioural models
tend to have very high false positive rate and all DL
models are susceptible to adversarial evasion. Real-world
deployment also has the problems of scalability,
explainability gaps and inability to integrate with legacy
systems. Based on such limitations, it is clear that there are
research gaps. Future efforts are needed to enhance
explainable Al to improve trust and adoption and to
mitigate concept drift and privacy constraints, through
continual and federated learning. Compact DL models are
required in resource-constrained loT/edge environments
and adversarially robust models should be given priority.
The absence of longitudinal benchmarks is a major
impediment and it is demonstrated that it is important to
have dynamic datasets at hand, which more closely match
malware activity.

V. RECOMMENDATIONS

Research in the future directions must focus on
realistic deployment strategies, namely developing
lightweight and energy-efficient DL models suitable to be
deployed in the 10T and distributed systems. One should
aim at explainable Al that will increase transparency
assisting in the adoption of enterprise and regulator.
Solving privacy issues through practices like federated
learning will be critical in ensuring data-sharing is reduced
across sectors. Moreover, researchers should develop
standardised regularly changing benchmark datasets
which would reflect the malware evolution in time. Lastly,
collaboration across disciplines between academic
establishments, industry, and cybersecurity agencies will
be important to hike resilience towards adversarial attack
and make sure that the models put forward are
operationally viable in different cyber environments.

V. CONCLUSION

The practice shows that deep learning has been
introduced into the sphere of malware detection and
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behavioural threat detection, showing higher accuracy
rates and greater adaptability and resilience than
traditional machine learning. CNNs are among the best at
static feature analysis, RNNs and Transformers are best at
capturing temporal behaviour, hybrid ensembles are
generally best at providing robustness against obfuscation
and adversarial approaches. However, the data may remain
limited, lack scalability, and not be adversarially resistant
especially in distributed 10T and edge setups. The review
shows that the potential of deep learning does not only lie
in the architecture design but continuous adaptation,
adversarial tests and lifecycle integration and these aspects
define the future of proactive, adaptive and trustworthy
cybersecurity solutions.
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