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Abstract 
The synthesised findings of five recent studies on the implementation of deep learning (DL) models to achieve adaptive 

malware classification and behavioural threat analysis in dynamic cyber environments are presented in this empirical review. 

The reviewed research shows that DL methods, convolutional neural networks (CNNs), recurrent neural networks (RNNs), 

transformers, and hybrid approaches are significantly more efficient tools in terms of accuracy, feature extraction, and 

adaptation to the complexity of malware behaviors than traditional machine learning methods. Hybrid models that merge 

supervised, unsupervised, and federated learning are even better at improving the scalability and privacy preservation. Despite 

these developments, several challenges persist, including high computational costs, limited access to high-quality labeled 

data, susceptibility to adversarial attacks, the need for explainability, and the incorporation of these systems into real-world 

settings. Research gaps were noted in creating lightweight IoT and edge computing systems, adversarially robust DL models, 

explainable AI, and continual learning systems. The article review generally confirms the instrumental role of DL in 

developing adaptive cybersecurity strategies, emphasizing the need for innovative, interdisciplinary, and practical 

implementations that match the sophistication and practicality required in a dynamic digital environment. 
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I. INTRODUCTION 

 

The issue of high-speed cyber threats increases the 

challenge of digital security systems, which have to face 

new and advanced methods of detection by malicious 

actors (Okoli et al., 2024). In more detail, the malware has 

become more flexible, exploiting such distributed systems 

as cloud, edge, and IoT (Gulatas et al., 2023). Zero-day 

attacks and polymorphic malware cannot always be 

detected using conventional signature-based and heuristic 

techniques. Actually, the industry demands more dynamic 

and intelligent methods of threat analysis (Kaur & Singh, 

2014). Deeper learning has come to be recognised as an 

innovative mechanism in cybersecurity with improved 

functions in malware classification and behavioural threat 

analysis (Okoli et al., 2024). Its potential to auto learn 

complex patterns in high-dimensional data makes it well 

applicable to inherent subtle anomalies in static feature 

sets, dynamic feature sets, as well as hybrid feature sets. In 

contrast to classic machine learning, deep learning is less 

dependent on manual features and more flexible in terms 

of recognizing patterns and adaptability--in particular, it 
can facilitate real-time adaptations to new adversarial 

strategies and maintain resilience. As a result, the use of 

CNNs, RNNs, transformers, and hybrids has become the 

subject of increased research (Alomar, Aysel & Cai, 

2024). 

 

The purpose of this review is to examine empirical 

evidence from recent studies on the deployment of deep 

learning models for adaptive malware classification and 

behavioural threat analysis. The scope covers five selected 

studies published between 2024 and 2025, which 

collectively investigate diverse methodologies, datasets, 

and applications. These studies encompass hybrid learning 

models, adversarial resilience, federated approaches, and 

large-scale empirical testing in distributed systems. By 

synthesising their findings, the review highlights 

performance outcomes, key contributions, limitations, and 

research gaps, thereby providing insight into the evolving 

role of deep learning in strengthening cybersecurity. 

 

II. REVIEW METHODOLOGY 
 

This review draws on five peer-reviewed studies 
published between 2024 and 2025, sourced from reputable 
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journals and research repositories such as the World 
Journal of Advanced Research and Reviews, Frontiers in 

Physics, and ResearchGate. The selection process focused 

on works that presented empirical investigations or 

systematic analyses of deep learning models for malware 

classification and behavioural threat detection. The 

inclusion criteria required studies to (i) fall within the 

2024–2025 timeframe, (ii) employ or review deep learning 

approaches such as CNNs, RNNs, hybrid and ensemble 

methods, and (iii) report experimental results or detailed 

evaluations using benchmark or real-world datasets. 

Studies that were purely conceptual without reference to 

empirical evidence, or outside the scope of cybersecurity 

threat detection, were excluded. The resulting corpus 

reflects a balance of experimental, hybrid, and review-

oriented research, thereby providing a comprehensive 

foundation for synthesising empirical findings in evolving 

cyber landscapes. 

 

 Summary of Characteristics of the Selected Studies 
 

Table 1 Summary of Characteristics of the Selected Studies 

# Criterion Study 1 Study 2 Study 3 Study 4 Study 5 

1 Bibliograph

ic Details 

Chukwuani et al. 

(2025). Machine 

Learning 

Techniques for 

Real-Time Malware 

Classification and 

Threat Detection in 

Distributed 

Systems. World 

Journal of 

Advanced Research 

and Reviews. 

Karki et al. 

(n.d). 

Cybersecurity 

with Deep 

Learning: 

Malware 

Detection 

through Real-

Time Pattern 

Recognition... 

ResearchGate. 

Sharma (2024). 

Machine Learning-

Driven Approaches 

for Contemporary 

Cybersecurity... 

Nuvern Machine 

Learning Reviews. 

Redhu, A., 

Choudhary, P., 

Srinivasan, K., 

Das, T.K. (2024). 

Deep learning-

powered 

malware 

detection in 

cyberspace: a 

contemporary 

review. Front. 

Phys. 

12:1349463. 

Okafor, M.O. 

(2024). Deep 

learning in 

cybersecurity: 

Enhancing threat 

detection and 

response. 

WJARR, 24(03), 

1116–1132. 

2 Objective / 

Research 

Problem 

Real-time malware 

classification & 

threat detection in 

distributed systems 

(IoT, cloud, edge). 

Improve 

malware 

detection with 

DL; address 

evasion, real-

time pattern 

recognition, 

collaborative 

intelligence. 

Survey ML in 

intrusion detection, 

malware 

classification, and 

incident response. 

Review DL 

models for 

malware 

detection; 

identify 

strengths, 

limitations, 

future directions. 

Explore DL 

models (CNN, 

RNN, hybrids) in 

real-time 

detection; address 

adversarial & 

scalability issues. 

3 Dataset 

Used 

CICIDS, EMBER, 

custom ICS logs. 

Features: hybrid 

(static, dynamic, 

behavioral). 

Not explicitly 

named; 

grayscale 

images, byte 

sequences, API 

logs. 

Not specified; 

references public 

datasets and real-

world logs. 

Not specified; 

references 

Drebin, NSL-

KDD, IoT-23, 

etc. 

CICIDS2017, 

CERT, 

PhishTank. 

4 Deep 

Learning 

Model / 

Methodolog

y 

Hybrid: RF, SVM, 

GBM + CNN, 

LSTM, 

Transformer. 

Supervised+unsupe

rvised; federated 

learning. 

CNN (images), 

RNN/LSTM 

(sequences), 

hybrid; 

adversarial 

training. 

CNN, RNN, 

autoencoders, 

ensembles, RL. 

Supervised+unsupe

rvised+RL. 

RNNs, DAEs, 

LSTMs, DNNs, 

DBNs, CNNs, 

Generative 

Models, DRL, 

Attention 

models. 

Hybrid CNN-

RNN; adversarial 

training; gradient 

masking. 

5 Evaluation 

Metrics & 

Results 

Accuracy>96%, 

AUC=0.984, low 

FPR. 

CNN up to 

97.8%; LSTM 

93.4%. DL > 

ML. 

Not quantified; 

qualitative 

improvements 

(fewer false 

positives, faster 

response). 

Acc, Prec, Rec, 

F1, AUC, 

Evasion. CNN: 

94–99%, Hybrid: 

up to 99.9%. 

Acc, Prec, Rec, 

F1, AUC. Hybrid 

CNN-RNN: 

96.8% vs CNN 

95.6% 

(CICIDS2017). 

6 Key 

Findings / 

Contributio

ns 

Hybrid models + 

federated learning 

enable privacy-

preserving, scalable 
detection. 

DL > ML; 

hybrid & 

transfer 

improve 
robustness. 

ML enhances 

accuracy, reduces 

manual effort, 

integrates threat 
intelligence. 

DL excels in 

feature 

extraction, 

adaptability, real-
time detection; 

hybrids improve 

robustness. 

Hybrid CNN-

RNN captures 

spatial & 

temporal 
features; 

adversarial 

training improves 

resilience. 
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7 Limitations 

Identified 

Labeling 

inconsistencies, 

concept drift, 

adversarial evasion, 

high computational 

cost. 

Adversarial 

vulnerability, 

computational 

overhead, 

legacy 

integration, 

explainability 

gaps. 

General survey—

no specific 

limitations 

discussed. 

Data imbalance, 

interpretability, 

adversarial 

vulnerability, 

scalability, 

deployment 

challenges. 

High 

computational 

cost, 

interpretability 

issues, 

adversarial 

attacks, 

scalability at IoT 

edge, privacy 

concerns. 

 

 Empirical Evidence and Comparative Synthesis of 
Deep Learning for Malware Classification and 
Adaptive Threat Detection 

Examples in the five selected works show 

empirically that the field of deep learning has moved 

beyond hype to actual tools of use in the malware 

classification process when the model architecture is 

adjusted appropriately based on feature modality and 

constraints of deployment. 

 

First, there are the approaches to static analysis, 

where models take a target artefact, such as bytecode, 

opcodes or PE-header characteristics. Karki et al. (n.d) 

indicate comparatively high accuracies of convolutional 

neural networks when either malware binaries are mapped 

as grayscale images or the byte sequences are utilized as 

such whereby the CNN can seek accuracies up to 97.8 

percent equivalent to those of sequence-based LSTMs 

which can reach 93.4 percent with identical input. This is 

supported by Redhu et al. (2024), which summarises 

numerous empirical studies reporting 94-99% by CNNs on 

careful curated static datasets (e.g. Drebin-style datasets). 

Although Sharma (2024) considers much wider range of 

evidence, the qualitative evidence credits faster response 

times and fewer false positives to deep models in which 

representations learn directly on underneath the static 

artefacts, limiting the use of the derailing handcrafted 

features. This lack of sensitivity to additions and 

packaging comes at the cost of brittleness to additions and 

packaging, obscurity and concept drift: Static pipelines are 

thus good at throughput and reproducibility and poor at 

being sensitive to changes in additions and packaging. 

 

"Moving to dynamic/behavioural analysis deep 

sequence models capture time-based consistent patterns in 

API (application programming interface) calls, system 

calls, and the run-time interaction graph. Hukwuani et al. 

(2025) combine behavioural telemetry via CICIDS, 

EMBER and bespoke ICS logs, testing LSTMs, 

Transformers and classical baselines; they achieve 

prediction accuracy of over 96% and AUC = 0.984 with 

low false-positive rates, indicating good discriminative 

power in conditions where temporal context is used. Karki 

et al. (2022) also note the effectiveness of the RNN/LSTM 

models in the context of API sequences and encourage the 

use of adversarial training to strengthen behaviour-based 

detectors against the ejection-based on feedback. The 
results tabulated in Okafor (n.d), reveal that temporal 

modelling does indeed matter in practice: the hybrid CNN-

RNN model achieves a higher result (96.8%) compared to 

a pure CNN (95.6%) on CICIDS2017, when taken to 

indicate the incremental usefulness of capturing both the 

spatial and the temporal footprints of malicious activity. 

Sharma (2024) additionally notes that behavioural models 

tend to minimize false positives and indeed enjoy greater 

flexibility and resilience towards zero-day behaviours 

compared to purely static pipelines; but Karki et al. (n.d) 

and Okafor (2024) warn that they present higher 

computational and integration costs as well as decreased 

resilience to conflicting or incompletely captured runtime 

events. 

 

The most consistent empirical indication throughout 

the corpus is in hybrid and ensemble models, a 

combination of static and dynamic features and / or deep 

and classical learners. Hukwuani et al. (2025) merge RF, 

SVM, GBM with CNNs, LSTMs, and Transformers in 

both supervised and unsupervised environments and find 

that feature-based fusion is more precise-recall-balanced, 

whereas federated learning maintains privacy under 

distributed environments. Reviewing hybrids that drive 

overall scores to the highest end of the scale-up to 99.9 

percent-Redhu et al. (2024) comment on how diversity 

(both in features and architecture) helps diminish over-

fitting and enhance resistance to prevalent obfuscation 

tactics. Okafor (2024) augments this by incorporating 

adversarial training and gradient masking (with inference 

in sparse settings), and this hybrid of CNN-RNN 

architrave actually improves detection without incurring 

an excessive latency cost in a strongly equipped 

environment. The findings are that ensembles and hybrids 

are always superior to single-modality models when tested 

on mixed or heterogeneous telemetry but introduce a 

complexity factor that casts doubts on the explainability 

and operational cost. 

 

The issue of non-stationarity of the malware 

ecosystems is addressed explicitly in the empirical work 

concerning adaptive and evolving threat detection. 

Concept drift in distributed/IoT/cloud/edge systems can be 

addressed by use of federated learning, enabling to 

continuously update the model with local data, yet not to 

violate privacy: Hukwuani et al. (2025). Karki et al. (n.d) 

place more emphasis on transfer learning, giving evidence 

that pre-training on historic bigger language corpora, and 

fine-tuning on latest samples, enhances generalisation to 

new families and different forms. Redhu et al. (2024) also 

point to the need of continual learning as the direction to 
sustain the performance of the prolonged drift against the 

adversarial pressure. Longitudinal testing is skewed: 

CICIDS2017, CERT and PhishTank (Okafor, 2024) 

provide base diversity, but neither Chukwuani et al (2025) 
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custom logging of ICS logs nor use of multi-domain 

telemetry can hope to match changed distributions faced 

in production. Chukwuani et al. (2025) and Okafor, (2025) 

are most concrete when it comes to fielding, framing the 

challenge of real-time detection in distributed systems, 

with Chukwuani et al. (2025) highlighting the need to do 

so in a privacy-preserving way and Okafor, (2025) 

considering limitations at both the IoT edge (compute, 

energy, latency) and requirements of adversarial 

resilience. 

 

A cross-analysis of the different datasets, metrics, 

strengths, and limitations refines these cues. Datasets 

include benchmark corpora (CICIDS, EMBER, Drebin, 

NSL-KDD, IoT-23) and operational logs (ICS, CERT, 

PhishTank), although Karki et al. (n.d), Sharma (2024), 

and Redhu et al. (2024) occasionally cite them in non-

specific terms, rather than reporting specific sample sizes. 

In cases where the metrics are available, we find Accuracy 

> 96% and AUC = 0.984 on hybrid behavioural pipelines 

(Chukwuani et al., 2025), CNN = 0.94-0.99 in a static 

setting and hybrids up to 0.999 (Redhu et al., 2024), and 

CNN-RNN 0.968 compared with CNN 0.956 on 

CICIDS2017 (Okafor, 2024). As observed by Sharma 

(2023), Karki et al. (n.d), the response is quicker and the 

false positives are reduced, which corresponds with 

reports on DL > ML baselines. Overall, the most 

convincing empirical performances come through (i) high 

accuracy of both static and behavioural features, (ii) 

enhanced adaptability with the use of temporal/sequential 

context, (iii) robustness through hybridisation and 

adversarial training, and (iv) privacy-aware scaling using 

federated learning in distributed environments. 

 

In counterbalance, there are certain constraints to 

external validity and operationalisation recurrently. 

Generalisation is challenged by bias and imbalance in the 

datasets (Redhu et al., 2024) and inconsistencies in 

labelling (Chukwuani et al., 2025) and a number of studies 

report adversarial vulnerability after defensive training 

(Karki et al., n.d; Redhu et al., 2024; Okafor, 2024). 

Compute overhead and latency also throws a spanner in 

the works in the IoT/edge setting of deployment 

(Chukwuani et al., 2025; Okafor, 2024), and legacy 

compatibility and explainability gaps (Karki et al., n.d) 

hinder adoption in the enterprise setting as well as post-

incident follow-up investigations. Concept drift is an 

unsolved threat: although federated or transfer learning 

can alleviate short-term robustness (Chukwuani et al., 

2025; Karki et al., n.d), there are few or no continuing, 

updated benchmarks, and Sharma (2024) does not provide 

quantified durability statements, in spite of her overall 

positive survey position. Privacy and governance issues, 

finally, become evident in issues of the privacy of 

behavioural telemetry and how to preserve privacy on the 

pathways through which models are updated. 

 

Summarising the evidence, three applicable results 
are presented. First, select the model that matches 

modality: CNNs or autoencoders on high-throughput, 

static screening; LSTMs/Transformers where sequential 

behaviour is available and time restrictions allow. Second, 

implement hybrid/ensemble pipelines in production to 

prevent obfuscation and tooling changes; the quantifiable 

improvements in AUC, F1 and false-positive control make 

the extra complexity worth the effort in high-risk 

circumstances. Third, plan to evolve: implement federated 

and transfer learning now, and consider future continual 

learning and routine drift audits over rolling windows of 

data like CICIDS/CERT and, where possible, specialized 

logs (e.g. ICS). In these papers, the inch in the empirical 

performance of deep learning is apparent, but its long-term 

lead lies in data governance, adversarial testing, and 

lifecycle engineering nearly as much as in design decision. 

 

III. CHALLENGES AND RESEARCH GAPS IN 

EMPIRICAL STUDIES 

 

Through the discussed papers, there are some 

prevailing challenges that limit the complete 

implementation of deep learning (DL) in the sub-domains 

of malware classification and adaptive threat detection. 

Prohibitive computational costs preclude use in IoT and 

edge settings, and limited availability and finicky 

annotations prevent generalisation. Behavioural models 

tend to have very high false positive rate and all DL 

models are susceptible to adversarial evasion. Real-world 

deployment also has the problems of scalability, 

explainability gaps and inability to integrate with legacy 

systems. Based on such limitations, it is clear that there are 

research gaps. Future efforts are needed to enhance 

explainable AI to improve trust and adoption and to 

mitigate concept drift and privacy constraints, through 

continual and federated learning. Compact DL models are 

required in resource-constrained IoT/edge environments 

and adversarially robust models should be given priority. 

The absence of longitudinal benchmarks is a major 

impediment and it is demonstrated that it is important to 

have dynamic datasets at hand, which more closely match 

malware activity. 

 

IV. RECOMMENDATIONS 
 

Research in the future directions must focus on 

realistic deployment strategies, namely developing 

lightweight and energy-efficient DL models suitable to be 

deployed in the IoT and distributed systems. One should 

aim at explainable AI that will increase transparency 

assisting in the adoption of enterprise and regulator. 

Solving privacy issues through practices like federated 

learning will be critical in ensuring data-sharing is reduced 

across sectors. Moreover, researchers should develop 

standardised regularly changing benchmark datasets 

which would reflect the malware evolution in time. Lastly, 

collaboration across disciplines between academic 

establishments, industry, and cybersecurity agencies will 

be important to hike resilience towards adversarial attack 

and make sure that the models put forward are 

operationally viable in different cyber environments. 

 

V. CONCLUSION 
 

The practice shows that deep learning has been 

introduced into the sphere of malware detection and 
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behavioural threat detection, showing higher accuracy 

rates and greater adaptability and resilience than 

traditional machine learning. CNNs are among the best at 

static feature analysis, RNNs and Transformers are best at 

capturing temporal behaviour, hybrid ensembles are 

generally best at providing robustness against obfuscation 

and adversarial approaches. However, the data may remain 

limited, lack scalability, and not be adversarially resistant 

especially in distributed IoT and edge setups. The review 

shows that the potential of deep learning does not only lie 

in the architecture design but continuous adaptation, 

adversarial tests and lifecycle integration and these aspects 

define the future of proactive, adaptive and trustworthy 

cybersecurity solutions. 
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