Predictive Analytics in Healthcare: Big Data, Better Decisions

Authors

DOI:

https://doi.org/10.5281/zenodo.14630840

Keywords:

predictive analytics, healthcare, big data, Machine Learning,, artificial intelligence, electronic health records, personalized medicine, disease prediction, Predictive Analytics, Machine Learning, Artificial Intelligence, Big Data, Healthcare Informatics, Precision Medicine, Clinical Decision Support

Abstract

The healthcare systems worldwide are moving towards the concept of predictive analytics, using data on patients for better and effective treatment and to organize usage of resources effectively. Given the exponential growth in digitalization and electronic health records (EHRs), machine learning (ML) and big data analytical models present the greatest forms of predictive health care. Hence, this comprehensive review will endeavor to make an evidence based, up-to-data compilation of past, current and future findings on data analytics applications in the domain of predictive healthcare. Materials and Methods: A comprehensive bibliographic database was searched using PubMed, Scopus, and Google Scholar electronic databases. Original articles published between January, 2010 and December, 2023 in peer reviewed international journals were retrieved that mainly dealt with predictive analytics in healthcare employing either machine learning, artificial intelligence, and big data processing methods. The general and specific data sources, the techniques used fo  analysis, the clinical use of the method and the efficiency results were obtained. Therefore, out of 823 identified studies, 55 papers were included into the research, indicating that the use of predictive analytics is expanding across the healthcare spectrum. These sources included EHR, claim data, gensomic data and wearable data. Deep learning and ensemble method were proved to have better prediction accuracy than traditional statistical methods. Core uses included disease risk profiling, patient characterization, risk of readmission, clinical decision making, and personalized medicine. Other limitations were also highlighted in the study to include issues concerning data quality, or the explanation of the created models and balancing of fairness and equality when making the models. Application of predictive analytics for healthcare is an ambitious step towards probability of early diagnosis of diseases, appropriate therapeutic approach, and optimal usage of resources. Yet, training, proper external validation, model updating, and integration of the model into clinical routines are a prerequisite for success. Shoring up, data governance, privacy or any form of prejudice within algorithms also remain crucial. The information and experience described in this review is principally concerned with the role of data analysis in the predictive health system. As healthcare organizations are producing increasing amount of data, use of the sophisticated data analysis methods will be crucial for achieving better clinical results, better organizational performance and innovation in the delivery of care.

Downloads

Download data is not yet available.

References

1. Alghamdi, A., Alsubait, T., Baz, A., & Alhakami, H. (2021). Healthcare analytics: A comprehensive review. Engineering, Technology & Applied Science Research, 11(1), 6650-6655. http://www.etasr.com/index.php/ETASR/article/view/3965

2. Alharthi, H. (2018). Healthcare predictive analytics: An overview with a focus on Saudi Arabia. Journal of infection and public health, 11(6), 749-756. https://www.sciencedirect.com/science/article/pii/S1876034118300303

3. Amarasingham, R., Patzer, R. E., Huesch, M., Nguyen, N. Q., & Xie, B. (2014). Implementing electronic health care predictive analytics: considerations and challenges. Health affairs, 33(7), 1148-1154. https://www.healthaffairs.org/doi/abs/10.1377/hlthaff.2014.0352

4. Andjelkovic Cirkovic, B. R., Cvetkovic, A. M., Ninkovic, S. M., & Filipovic, N. D. (n.d.). Prediction Models for Estimation of Survival Rate and Relapse for Breast Cancer Patients.

5. Badawy, M., Ramadan, N., & Hefny, H. A. (2023). Healthcare predictive analytics using machine learning and deep learning techniques: a survey. Journal of Electrical Systems and Information Technology, 10(1), 40. https://link.springer.com/article/10.1186/s43067-023-00108-y

6. Bakare, M. A., & Argiddi, R. V. (2016). Prediction of Disease using Big Data Analysis. International Journal of Innovative Research in Computer and Communication Engineering, 4(4).

7. Bartley, A. (2021). Predictive analytics in healthcare. White paper on Healthcare Predictive Analytics© Intel Corporation. https://www.intel.sg/content/dam/www/public/us/en/documents/white-papers/gmc-analytics-healthcare-whitepaper.pdf

8. Batko, K., & Ślęzak, A. (2022). The use of Big Data Analytics in healthcare. Journal of big Data, 9(1), 3. https://link.springer.com/article/10.1186/s40537-021-00553-4

9. Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317-1318. https://jamanetwork.com/journals/jama/article-abstract/2675024

10. Belle, A., Thiagarajan, R., Soroushmehr, S. R., Navidi, F., Beard, D. A., & Najarian, K. (2015). Big data analytics in healthcare. BioMed research international, 2015(1), 370194. https://onlinelibrary.wiley.com/doi/abs/10.1155/2015/370194

11. Black, L., Knoppers, B. M., Avard, D., Simard, J., & Deschênes, M. (2012). Legal liability and the uncertain nature of risk prediction: The case of breast cancer risk prediction models. Public Health Genomics, 15(6), 335-340. https://karger.com/phg/article-abstract/15/6/335/289184

12. Boukenze, B., Mousannif, H., & Haqiq, A. (2016). Predictive analytics in healthcare system using data mining techniques. Comput Sci Inf Technol, 1, 1-9. https://airccj.org/CSCP/vol6/csit65201.pdf

13. Boukenze, B., Mousannif, H., & Haqiq, A. (2016). Predictive Analytics in Healthcare System using Data Mining Techniques. In Proceedings of CCNET-2016 (pp. 01-09).

14. Char, D. S., Shah, N. H., & Magnus, D. (2018). Implementing machine learning in health care–addressing ethical challenges. New England Journal of Medicine, 378(11), 981-983. https://www.nejm.org/doi/abs/10.1056/NEJMp1714229

15. Chen, J. H., Alagappan, M., Goldstein, M. K., Asch, S. M., & Altman, R. B. (2017). Decaying relevance of clinical data towards future decisions in data-driven inpatient clinical order sets. International Journal of Medical Informatics, 102, 71-79. https://www.sciencedirect.com/science/article/pii/S138650561730059X

16. Chinchmalatpure, M. A., & Dhore, M. P. (n.d.). Review of Big Data Challenges in Healthcare Application. IOSR Journal of Computer Engineering, 06-09.

17. Christodoulou, E., Ma, J., Collins, G. S., Steyerberg, E. W., Verbakel, J. Y., & Van Calster, B. (2019). A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. Journal of Clinical Epidemiology, 110, 12-22. https://www.sciencedirect.com/science/article/pii/S0895435618310813

18. Cohen, I. G., Amarasingham, R., Shah, A., Xie, B., & Lo, B. (2014). The legal and ethical concerns that arise from using complex predictive analytics in health care. Health affairs, 33(7), 1139-1147. https://www.healthaffairs.org/doi/abs/10.1377/hlthaff.2014.0048

19. Culotta, A. (2010). Towards Detecting Influenza Epidemics by Analyzing Twitter Messages. In Proceedings of the 1st Workshop in Social Media Analytics (SOMA '10).

20. David, G., Smith-McLallen, A., & Ukert, B. (2019). The effect of predictive analytics-driven interventions on healthcare utilization. Journal of health economics, 64, 68-79. https://www.sciencedirect.com/science/article/pii/S0167629618305095

21. Dhir A, Talwar S, Kaur P, Malibari A. Food waste in hospitality and food services: a systematic literature review and framework development approach. J Clean Prod. 2020; 270:122861. https://doi.org/10.1016/j.jclepro.2020.122861

22. Frost & Sullivan. (n.d.). Drowning in Big Data? Reducing Information Technology Complexities and Costs for Healthcare Organizations. Retrieved from http://www.emc.com/collateral/analystreports/frost-sullivan-reducing-informationtechnologycomplexities-ar.pdf

23. Galetsi, P., & Katsaliaki, K. (2020). A review of the literature on big data analytics in healthcare. Journal of the Operational Research Society, 71(10), 1511-1529. https://www.tandfonline.com/doi/abs/10.1080/01605682.2019.1630328

24. Ghassemi, M., Naumann, T., Schulam, P., Beam, A. L., & Ranganath, R. (2018). Opportunities in machine learning for healthcare. arXiv preprint arXiv:1806.00388. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7233077/

25. Goldstein, B. A., Navar, A. M., & Pencina, M. J. (2016). Risk prediction with electronic health records: The importance of model validation and clinical context. JAMA Cardiology, 1(9), 976. https://jamanetwork.com/journals/jamacardiology/article-abstract/2566165

26. Guo, C., & Chen, J. (2023). Big data analytics in healthcare. In Knowledge technology and systems: Toward establishing knowledge systems science (pp. 27-70). Singapore: Springer Nature Singapore. https://link.springer.com/chapter/10.1007/978-981-99-1075-5_2v

27. Harris, S. L., May, J. H., & Vargas, L. G. (2016). Predictive analytics model for healthcare planning and scheduling. European Journal of Operational Research, 253(1), 121-131. https://www.sciencedirect.com/science/article/pii/S0377221716300376

28. Higdon, R., Stewart, E., Roach, J. C., Dombrowski, C., Stanberry, L., Clifton, H., ... & Kolker, E. (2013). Predictive analytics in healthcare: medications as a predictor of medical complexity. Big Data, 1(4), 237-244. https://www.liebertpub.com/doi/abs/10.1089/big.2013.0024 https://www.liebertpub.com/doi/abs/10.1089/big.2013.0024

29. Hripcsak, G., Ryan, P. B., Duke, J. D., Shah, N. H., Park, R. W., Huser, V., Suchard, M. A., Schuemie, M. J., DeFalco, F. J., Perotte, A., Banda, J. M., Reich, C. G., Schilling, L. M., Matheny, M. E., Meeker, D., Pratt, N., & Madigan, D. (2016). Characterizing treatment pathways at scale using the OHDSI network. Proceedings of the National Academy of Sciences, 113(27), 7329-7336.

30. Iqbal, S. A., Wallach, J. D., Khoury, M. J., Schully, S. D., & Ioannidis, J. P. A. (2016). Reproducible research practices and transparency across the biomedical literature. PLoS Biology, 14(1), e1002333. https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002333

31. Jen, C. H., Wang, C. C., Jiang, B. C., Chu, Y. H., & Chen, M. S. (2012). Application of classification techniques on development and early warning system for chronic illnesses. Expert Systems with Applications, 39(10), 8852-8858.

32. Kleinrouweler, C. E., Cheong-See, F. M., Collins, G. S., Kwee, A., Thangaratinam, S., Khan, K. S., Mol, B. W. J., Pajkrt, E., Moons, K. G. M., & Schuit, E. (2016). Prognostic models in obstetrics: Available, but far from applicable. American Journal of Obstetrics and Gynecology, 214(1), 79-90. https://www.sciencedirect.com/science/article/pii/S0002937815005967

33. Kumar, H., & Singh, N. (2017). Review paper on Big Data in healthcare informatics. International Research Journal of Engineering and Technology (IRJET), 4(2).

34. Kumar, M., Kumar, A., Verma, S., Bhattacharya, P., Ghimire, D., Kim, S. H., & Hosen, A. S. (2023). Healthcare Internet of Things (H-IoT): Current trends, future prospects, applications, challenges, and security issues. Electronics, 12(9), 2050. https://www.mdpi.com/2079-9292/12/9/2050

35. Leung, C. K., Fung, D. L., Mushtaq, S. B., Leduchowski, O. T., Bouchard, R. L., Jin, H., ... & Zhang, C. Y. (2020, August). Data science for healthcare predictive analytics. In Proceedings of the 24th Symposium on International Database Engineering & Applications (pp. 1-10). https://dl.acm.org/doi/abs/10.1145/3410566.3410598

36. Levy-Fix, G., Gorman, S. L., Sepulveda, J. L., & Elhadad, N. (2018). When to re-order laboratory tests? Learning laboratory test shelf-life. Journal of Biomedical Informatics, 85, 21-29. https://www.sciencedirect.com/science/article/pii/S153204641830145X

37. Linda, A. (2016, October). Seven ways Predictive analytics Can improve Healthcare. Elsevier.

38. Liu, V. X., Bates, D. W., Wiens, J., & Shah, N. H. (2019). The number needed to benefit: estimating the value of predictive analytics in healthcare. Journal of the American Medical Informatics Association, 26(12), 1655-1659. https://academic.oup.com/jamia/article-abstract/26/12/1655/5516459

39. Lynch, C. J., & Liston, C. (2018). New machine-learning technologies for computer-aided diagnosis. Nature Medicine, 24(9), 1304-1305. https://www.nature.com/articles/s41591-018-0178-4

40. Malik, M. M., Abdallah, S., & Ala’raj, M. (2018). Data mining and predictive analytics applications for the delivery of healthcare services: a systematic literature review. Annals of Operations Research, 270(1), 287-312. https://link.springer.com/article/10.1007/s10479-016-2393-z

41. Mounika, M., Suganya, S. D., Vijayashanthi, B., & Anand, S. K. (2015). Predictive Analysis of Diabetic Treatment Using Classification Algorithm. International Journal of Computer Science and Information Technologies, 6(3).

42. Muniasamy, A., Tabassam, S., Hussain, M. A., Sultana, H., Muniasamy, V., & Bhatnagar, R. (2020). Deep learning for predictive analytics in healthcare. In The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019) 4 (pp. 32-42). Springer International Publishing. https://publications.dlpress.org/index.php/jcha/article/view/16

43. Nambiar, R., Sethi, A., Bhardwaj, R., & Vargheese, R. (2013). A Look at Challenges and Opportunities of Big Data Analytics in Healthcare. In IEEE International Conference on Big Data.

44. Naqishbandi, T. A., & Ayyanathan, N. (2019, March). Clinical big data predictive analytics transforming healthcare:-An integrated framework for promise towards value based healthcare. In International Conference on E-Business and Telecommunications (pp. 545-561). Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-030-24318-0_64

45. Nevin, L., & PLoS Medicine Editors. (2018). Advancing the beneficial use of machine learning in health care and medicine: Toward a community understanding. PLoS Medicine, 15(11), e1002708.

46. Nithya, B., & Ilango, V. (2017, June). Predictive analytics in health care using machine learning tools and techniques. In 2017 International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 492-499). IEEE. https://ieeexplore.ieee.org/abstract/document/8250771/

47. Nithya, R., Manikandan, P., & Ramyachitra, D. (2015). Analysis of Clustering Technique for the diabetes dataset using the training set parameter. International Journal of Advanced Research in Computer and Communication Engineering, 4(9).

48. Nwaimo, C. S., Adegbola, A. E., & Adegbola, M. D. (2024). Transforming healthcare with data analytics: Predictive models for patient outcomes. GSC Biological and Pharmaceutical Sciences, 27(3), 025-035. https://gsconlinepress.com/journals/gscbps/content/transforming-healthcare-data-analytics-predictive-models-patient-outcomes

49. Ohno-Machado, L. (2018). Data science and artificial intelligence to improve clinical practice and research. Journal of the American Medical Informatics Association, 25(10), 1273. https://academic.oup.com/jamia/article-abstract/25/10/1273/5128467

50. Park, S. H. (2018). Regulatory approval versus clinical validation of artificial intelligence diagnostic tools. Radiology, 288(3), 910-911. https://pubs.rsna.org/doi/abs/10.1148/radiol.2018181310

51. Prabavathi, G. T., & Shanthipriya, M. (2017). Review of Healthcare Informatics. International Journal of Innovative Research in Computer and Communication Engineering, 5(7).

52. Priyanka, K., & Kulennavar, N. (2014). A Survey on Big Data Analytics in Health Care. International Journal of Computer Science and Information Technologies, 5(4), 5865-5868.

53. Reddy, A. R., & Kumar, P. S. (2016, February). Predictive big data analytics in healthcare. In 2016 Second International Conference on Computational Intelligence & Communication Technology (CICT) (pp. 623-626). IEEE. https://ieeexplore.ieee.org/abstract/document/7546683/

54. Riley, R. D., Ensor, J., Snell, K. I., Debray, T. P., Altman, D. G., Moons, K. G., & Collins, G. S. (2016). External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: Opportunities and challenges. BMJ, 353, i3140. https://www.bmj.com/content/353/bmj.i3140.abstract

55. Robinson, C., Portier, C. J., Čavoški, A., Mesnage, R., Roger, A., Clausing, P., ... & Lyssimachou, A. (2020). Achieving a high level of protection from pesticides in Europe: problems with the current risk assessment procedure and solutions. European Journal of Risk Regulation, 11(3), 450-480.

56. Subrahmanya, S. V. G., Shetty, D. K., Patil, V., Hameed, B. Z., Paul, R., Smriti, K., ... & Somani, B. K. (2022). The role of data science in healthcare advancements: applications, benefits, and future prospects. Irish Journal of Medical Science (1971-), 191(4), 1473-1483.

57. Shah, N. D., Steyerberg, E. W., & Kent, D. M. (2018). Big data and predictive analytics: Recalibrating expectations. JAMA, 320(1), 27-28. https://jamanetwork.com/journals/jama/article-abstract/2683125

58. Shanthipriya, M., & Prabavathi, G. T. (2018). Healthcare predictive analytics. Int. Res. J. Eng. Technol.(IRJET), 5(2), 1459-1462. https://www.academia.edu/download/56008144/IRJET-V5I2319.pdf

59. Steyerberg, E. W. (2009). Clinical Prediction Models. Springer. https://link.springer.com/chapter/10.1007/978-0-387-77244-8_16

60. Steyerberg, E. W., Moons, K. G. M., van der Windt, D. A., Hayden, J. A., Perel, P., Schroter, S., Riley, R. D., Hemingway, H., & Altman, D. G. (2013). Prognosis research strategy (PROGRESS) 3: Prognostic model research. PLoS Medicine, 10(2), e1001381. https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001381

61. Suresh, S. (2016). Big data and predictive analytics. Pediatr Clin N Am, 63, 357-366. https://123library.org/pdf/book/237735/quality-of-care-and-information-technology-an-issue-of-pediatric-clinics-of-north-america-e-book.pdf#page=156

62. Tran, N. D. T., Leung, C. K., Madill, E. W., & Binh, P. T. (2022, June). A deep learning based predictive model for healthcare analytics. In 2022 IEEE 10th International Conference on Healthcare Informatics (ICHI) (pp. 547-549). IEEE. https://ieeexplore.ieee.org/abstract/document/9874514/

63. Van Calster, B., Nieboer, D., Vergouwe, Y., De Cock, B., Pencina, M. J., & Steyerberg, E. W. (2016). A calibration hierarchy for risk models was defined: From utopia to empirical data. Journal of Clinical Epidemiology, 74, 167-176. https://www.sciencedirect.com/science/article/pii/S0895435615005818

64. Van Calster, B., Wynants, L., Timmerman, D., Steyerberg, E. W., & Collins, G. S. (2019). Predictive analytics in health care: how can we know it works?. Journal of the American Medical Informatics Association, 26(12), 1651-1654. https://academic.oup.com/jamia/article-abstract/26/12/1651/5542900

65. van der Ploeg, T., Nieboer, D., & Steyerberg, E. W. (2016). Modern modeling techniques had limited external validity in predicting mortality from traumatic brain injury. Journal of Clinical Epidemiology, 78, 83-89. https://www.sciencedirect.com/science/article/pii/S0895435616300142

66. Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine learning in medicine: Addressing ethical challenges. PLoS Medicine, 15(11), e1002689. https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002689

67. Wang, L., & Alexander, C. A. (2015). Big Data in Medical Applications and Health Care. American Medical Journal, 6(1).

68. Wills, M. J. (2014). Decisions through data: Analytics in healthcare. Journal of Healthcare Management, 59(4), 254-262. https://journals.lww.com/jhmonline/fulltext/2014/07000/decisions_through_data__analytics_in_healthcare.5.aspx

69. Zafar, F., Raza, S., Khalid, M. U., & Tahir, M. A. (2019, March). Predictive analytics in healthcare for diabetes prediction. In Proceedings of the 2019 9th International Conference on Biomedical Engineering and Technology (pp. 253-259). https://dl.acm.org/doi/abs/10.1145/3326172.3326213

70. Zheng, Y., & Hu, X. (2020). Healthcare predictive analytics for disease progression: a longitudinal data fusion approach. Journal of Intelligent Information Systems, 55(2), 351-369. https://link.springer.com/article/10.1007/s10844-020-00606-9

Downloads

Published

2025-01-17

How to Cite

Rahim, M. J., Afroz, A., & Akinola, O. (2025). Predictive Analytics in Healthcare: Big Data, Better Decisions. International Journal of Scientific Research and Modern Technology, 4(1), 1–21. https://doi.org/10.5281/zenodo.14630840

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.