Evaluation of the Efficiency of Advanced Number Generators in Cryptographic Systems using a Comparative Approach

Authors

  • Chris Gilbert Department of Computer Science and Engineering/College of Engineering and Technology/William V.S. Tubman University https://orcid.org/0009-0003-5119-1281
  • Mercy Abiola Gilbert Department of Guidance and Counseling/College of Education/William V.S. Tubman University

DOI:

https://doi.org/10.38124/ijsrmt.v3i11.77

Abstract

This study explores the effectiveness and security impact of two pseudorandom number generators (PRNGs): the Fibonacci Random Number Generator (FRNG) and the Gaussian Random Number Generator (GRNG) in cryptographic systems. By applying statistical tests, the research aims to determine which of these generators provides a more robust level of randomness, thus boosting the security of cryptographic applications. The approach involves generating sequences of random integers using Java implementations of both FRNG and GRNG, followed by an analysis with the Chi-Square Test and Kolmogorov-Smirnov Test. Results show that the Gaussian PRNG produces numbers that align more consistently with a uniform distribution, while the Fibonacci PRNG shows notable irregularities. This points to the need for rigorous testing of RNGs to uphold security and reliability in cryptographic systems. The study’s outcomes carry important implications for choosing cryptographic algorithms, emphasizing the crucial role of high-quality RNGs in safeguarding data confidentiality, integrity, and authenticity.

Downloads

Download data is not yet available.

References

Abilimi, C. A. (2012). Comparative Analysis of the Efficiency of Pseudo Random Numbers Generators Algorithms in Cryptographic Application.

Abilimi, C. A., Asante, M., Mensah, E. O., & Boateng, F. O.(2013).Testing for Randomness in Pseudo Random Number Generators Algorithms in a Cryptographic Application.

Adetifa, O. E. (2024). Comparative Analysis and Applications of Quantum Random Number Generators: Evaluating Efficiency, Statistical Properties, and Real-world Use Cases (Master's thesis, Morgan State University).

Ahmed, I. H. (2022). Secure authentication and key agreement via abstract multi-agent interaction.

Alawida, M. (2024). Enhancing logistic chaotic map for improved cryptographic security in random number generation. Journal of Information Security and Applications, 80, 103685.

Ali, N. A. M., Mohammed, S. G., Mohammed, F. G., & Ali, F. A. M. (2023). Comprehensive on Exploring Advanced Ciphering for Enhanced Data Protection. Wasit Journal for Pure Sciences, 2(4).

Almaraz Luengo, E. (2022). A brief and understandable guide to pseudo-random number generators and specific models for security. Statistic Surveys, 16, 137-181.

Beltrami, E. (2020). What is random?: chance and order in mathematics and life. Springer Nature.

Bhati, A. S., Dufka, A., Andreeva, E., Roy, A., & Preneel, B. (2024, July). Skye: An Expanding PRF based Fast KDF and its Applications. In Proceedings of the 19th ACM Asia Conference on Computer and Communications Security (pp. 1082-1098).

Bikos, A., Nastou, P. E., Petroudis, G., & Stamatiou, Y. C. (2023). Random Number Generators: Principles and Applications. Cryptography, 7(4), 54.

Casella, G., & Berger, R. (2024). Statistical inference. CRC Press.

Cassiers, G., Masure, L., Momin, C., Moos, T., Moradi, A., & Standaert, F. X. (2023). Randomness generation for secure hardware masking-unrolled trivium to the rescue. Cryptology ePrint Archive.

Christopher, A. A. (2013). Effective Information Security Management in Enterprise Software Application with the Revest-Shamir-Adleman (RSA) Cryptographic Algorithm.

Cryptographic Operations: Best Practices. (2017). Retrieved from [https://www.cryptomathic.com/news-events/blog/cryptographic-operations-best-practices-to-make-your-system-secure].

Das, S. B., Mishra, S. K., & Sahu, A. K. (2020). A new modified version of standard RSA cryptography algorithm. In Smart Computing Paradigms: New Progresses and Challenges: Proceedings of ICACNI 2018, Volume 2 (pp. 281-287). Springer Singapore.

Diffie, W., & Landau, S. (2007). Privacy on the line: The politics of wiretapping and encryption. MIT Press.

Easttom, W. (2022). Modern cryptography: applied mathematics for encryption and information security. Springer Nature.

Fazili, M. M., Shah, M. F., Naz, S. F., & Shah, A. P. (2022). Next generation QCA technology based true random number generator for cryptographic applications. Microelectronics Journal, 126, 105502.

Ferguson, N., Schneier, B., & Kohno, T. (2010). Cryptography and network security: Principles and practice (3rd ed.). Prentice Hall.

Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). SAGE Publications.

Gilbert C. & Gilbert M.A.(2024a).Unraveling Blockchain Technology: A Comprehensive Conceptual Review. International Journal of Emerging Technologies and Innovative Research (www.jetir.org | UGC and ISSN Approved), ISSN:2349-5162, Vol.11, Issue 9, page no. ppa575-a584, September-2024, Available at : http://www.jetir.org/papers/JETIR2409066.pdf

Gilbert C. & Gilbert M.A.(2024b).Strategic Framework for Human-Centric AI Governance: Navigating Ethical, Educational, and Societal Challenges. (2024). International Journal of Latest Technology in Engineering Management & Applied Science, 13(8), 132-141. https://doi.org/10.51583/IJLTEMAS.2024.130816

Gilbert C. & Gilbert M.A.(2024c).The Impact of AI on Cybersecurity Defense Mechanisms: Future Trends and Challenges.Global Scientific Journals.ISSN 2320-9186,12(9),427-441. https://www.globalscientificjournal.com/researchpaper/The_Impact_of_AI_on_Cybersecurity_Defense_Mechanisms_Future_Trends_and_Challenges_.pdf

Gilbert, C. & Gilbert, M.A. (2024d). The Convergence of Artificial Intelligence and Privacy: Navigating Innovation with Ethical Considerations. International Journal of Scientific Research and Modern Technology, 3(9), 9-9.

Gilbert, C. & Gilbert, M.A.(2024e).Transforming Blockchain: Innovative Consensus Algorithms for Improved Scalability and Security. International Journal of Emerging Technologies and Innovative Research (www.jetir.org), ISSN:2349-5162, Vol.11, Issue 10, page no.b299-b313, October-2024, Available :http://www.jetir.org/papers/JETIR2410134.pdf

Goldreich, O. (2001). Foundations of cryptography: Volume 1, basic tools. Cambridge University Press.

Hamza, M. A. (2023). Nonlinear Component of a Block Cipher over Mordell Elliptic Curve Using Linear Congruent Generator (Doctoral dissertation, Quaid I Azam University Islamabad).

Imam, R., Areeb, Q. M., Alturki, A., & Anwer, F. (2021). Systematic and critical review of RSA based public key cryptographic schemes: Past and present status. IEEE Access, 9, 155949-155976.

Inan, A. (2021). Statistical Analysis of Prime Number Generators putting encryption at risk. In Advances in Security, Networks, and Internet of Things: Proceedings from SAM'20, ICWN'20, ICOMP'20, and ESCS'20 (pp. 3-16). Springer International Publishing.

Irfan, M., Ali, A., Khan, M. A., Ehatisham-ul-Haq, M., Mehmood Shah, S. N., Saboor, A., & Ahmad, W. (2020). Pseudorandom number generator (PRNG) design using hyper-chaotic modified robust logistic map (HC-MRLM). Electronics, 9(1), 104.

Ismael, A. Y. (2019). Construct a Strong and High Performance Algorithm to Generate Pseudorandom Number Generator (PRNG) for Stream Cipher (Doctoral dissertation, University of Baghdad).

Janovský, M. A. (2020). Analyzing use of cryptographic primitives by machine learning approaches (Doctoral dissertation, Masaryk University).

Johnson, J. (2023). The Vulnerabilities to the RSA Algorithm and Future Alternative Algorithms to Improve Security.

Kaas-Mason, M., Prpic, G., & Suriyasuphapong, S. (2019). Comparison of Pseudo, Chaotic and Quantum Random Number Generators and their use in Cyber Security. Group, 4(1st).

Kelsey, J., Schneier, B., & Wagner, D. (1998). Key-schedule cryptanalysis of IDEA, GDES, and other cipher systems. In Advances in Cryptology - CRYPTO '98 (pp. 237-252). Springer.

Kietzmann, P., Schmidt, T. C., & Wählisch, M. (2021). A guideline on pseudorandom number generation (PRNG) in the IoT. ACM Computing Surveys (CSUR), 54(6), 1-38.

Knuth, D. E. (1997). The art of computer programming, Volume 2: Seminumerical algorithms (3rd ed.). Addison-Wesley.

Kumar, S., & Sharma, D. (2023). Key Generation in Cryptography Using Elliptic-Curve Cryptography and Genetic Algorithm. Engineering Proceedings, 59(1), 59.

L'Ecuyer, P., & Simard, R. (2007). TestU01: A C library for empirical testing of random number generators. ACM Transactions on Mathematical Software, 33(4), 1-40. https://doi.org/10.1145/1268776.1268777.

Loos, M. (2023). Security analysis of the Matter protocol.

Mammeri, Z. Z. (2024). Cryptography: Algorithms, Protocols, and Standards for Computer Security. John Wiley & Sons.

Mehic, M., Rass, S., Fazio, P., & Voznak, M. (2022). Quantum Key Distribution Networks.

Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A. (1996). Handbook of applied cryptography. CRC Press.

Moura, P. M. F. (2018). Identity management and authorization infrastructure in secure mobile access to electronic health records (Master's thesis, Universidade da Beira Interior (Portugal)).

National Institute of Standards and Technology. (2010). A statistical test suite for random and pseudorandom number generators for cryptographic applications (NIST Special Publication 800-22). U.S. Department of Commerce. https://doi.org/10.6028/NIST.SP.800-22.

Noibate, S. (2023). Random Number Generators, Challenges and Limitations. Challenges and Limitations (February 3, 2023).

Occil, P. (2023). Random Number Generator Recommendations for Applications.

Opoku-Mensah, E., Abilimi, C. A., & Amoako, L. (2013). The Imperative Information Security Management System Measures In the Public Sectors of Ghana. A Case Study of the Ghana Audit Service. International Journal on Computer Science and Engineering (IJCSE), 760-769.

Opoku-Mensah, E., Abilimi, C. A., & Boateng, F. O. (2013). Comparative analysis of efficiency of fibonacci random number generator algorithm and gaussian Random Number Generator Algorithm in a cryptographic system. Comput. Eng. Intell. Syst, 4, 50-57.

OWASP Cheat Sheet Series. (2023). Key management cheat sheet. Retrieved from [https://cheatsheetseries.owasp.org/cheatsheets/Key_Management_Cheat_Sheet.html].

Patterson, C. C., Dahlquist, G. G., Gyürüs, E., Green, A., & Soltész, G. (2009). Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. The lancet, 373(9680), 2027-2033.

Perach, B. (2019). An asynchronous and low-power true random number generator using STT-MTJ. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(11), 2473-2484.

Petura, O. (2019). True random number generators for cryptography: Design, securing and evaluation (Doctoral dissertation, Université de Lyon).

Rani, D., Gill, N. S., & Gulia, P. (2024). A forensic framework to improve digital image evidence administration in IIoT✰. Journal of Industrial Information Integration, 38, 100568.

Redkins, B., Kuzminykh, I., & Ghita, B. (2023). Security of Public-Key Schemes in the Quantum Computing Era–A Literature Review. IEEE Access, 1-6.

Singh, P., Choudhary, N., Samnotra, B., Bhel, S., Sharma, S., Kour, H., ... & Kumar, S. (2024). Understanding RSA Algorithm in Cryptography.

Suresh, K., Pal, R., & Balasundaram, S. R. (2022). Two-factor-based RSA key generation from fingerprint biometrics and password for secure communication. Complex & Intelligent Systems, 8(4), 3247-3261.

Tahir, M., Sardaraz, M., Mehmood, Z., & Muhammad, S. (2021). CryptoGA: a cryptosystem based on genetic algorithm for cloud data security. Cluster Computing, 24(2), 739-752.

Taha, M. A. (2017). Real-time and portable chaos-based crypto-compression systems for efficient embedded architectures (Doctoral dissertation, UNIVERSITE DE NANTES).

Uwaezuoke, E. C. (2022). Annalysis of Power Line Communication Network Vulnerabilities Using Cyber Security Techniques (Doctoral dissertation, University of Johannesburg).

Zhang, B., & Ni, T. Y. (2020). A Multi-dimensional Adversary Analysis of RSA and ECC in Blockchain Encryption.

Zia, U., McCartney, M., Scotney, B., Martinez, J., & Sajjad, A. (2023). A resource efficient pseudo random number generator based on sawtooth maps for Internet of Things. Security and Privacy, 6(5), e304.

Downloads

Published

2024-11-21

How to Cite

Gilbert, C., & Gilbert, M. A. (2024). Evaluation of the Efficiency of Advanced Number Generators in Cryptographic Systems using a Comparative Approach. International Journal of Scientific Research and Modern Technology, 3(11), 79–88. https://doi.org/10.38124/ijsrmt.v3i11.77