Green Synthesis of ZnO Nanoparticles from Caesalpinia bonducella Seed and Application in Nano-priming-Assisted Vigna mungo Seed Germination

Authors

  • Doveit Antony Charles Department of biotechnology, school of biosciences and technology, Vellore institute of technology, Vellore, India-632014 https://orcid.org/0000-0002-8317-3139
  • Ramkumar Katturajan Department of biotechnology, school of biosciences and technology, Vellore institute of technology, Vellore, India-632014 https://orcid.org/0000-0001-5567-625X
  • Gokul Kumar Department of biotechnology, school of biosciences and technology, Vellore institute of technology, Vellore, India-632014 https://orcid.org/0009-0005-2461-9638
  • Suriya Velu Department of biotechnology, school of biosciences and technology, Vellore institute of technology, Vellore, India-632014 https://orcid.org/0009-0001-1643-5100
  • Nafisa Thabassum Nisar Department of biotechnology, school of biosciences and technology, Vellore institute of technology, Vellore, India-632014 https://orcid.org/0009-0007-6871-0809
  • Sabina Evan Prince Department of biotechnology, school of biosciences and technology, Vellore institute of technology, Vellore, India-632014

DOI:

https://doi.org/10.5281/zenodo.14745500

Keywords:

ZnO nanoparticles, Vigna mungo, Caesalpinia bonducella, Nano priming

Abstract

The green synthesis of zinc oxide nanoparticles employing Caesalpinia bonducella as a bio-reductant explores their potential applications in plant growth promotion through nano-priming and environmental safety. Conventional seed treatments often lead to risks to the environment and toxicological concerns. There is an urgent need for safe and sustainable solutions to improve seed germination and plant growth. This study aims to evaluate the efficacy of ZnO nanoparticles as a nano-priming agent on Vigna mungo seed germination and root, shoot development at varying concentrations. Employing XRD, SEM, UV-vis Spectroscopy, FTIR, and Zeta potential measurements, the synthesized ZnO nanoparticles were comprehensively characterized, confirming their successful production. Following characterization, the study delves into the pioneering exploration of nano-priming, evaluating the impact of ZnO nanoparticles on Vigna mungo germination and plant growth parameters (root and shoot lengths) at defined concentrations. Furthermore, the same concentrations were utilized to assess nanoparticle toxicity through mortality tests on Artemia larvae. This investigation underscores the potential of biogenic ZnO nanoparticles as potent nano-priming agents and unveils Caesalpinia bonducella as a valuable source for nanoparticle synthesis. Compared to the control group, the study demonstrates significantly positive effects in the germination index and overall plant growth in seeds treated with ZnO nanoparticles. Therefore, the ZnO nanoparticles improve seed germination and growth in Vigna mungo with minimum toxicity, ensuring a safe and efficient agricultural application.

Downloads

Download data is not yet available.

References

[1] Ahmed, S.F.; Mofijur, M.; Rafa, N.; Chowdhury, A.T.; Chowdhury, S.; Nahrin, M.; Islam, A.B.M.S.; Ong, H.C. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environ Res 2022, 204, 111967.

[2] Hano, C.; Abbasi, B.H. Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules. , 12(1) . 2022.

[3] Gupta, D.; Boora, A.; Thakur, A.; Gupta, T.K. Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. Environ Res 2023, 231, 116316.

[4] Kumar, J.A.; Krithiga, T.; Manigandan, S.; Sathish, S.; Renita, A.A.; Prakash, P.; Prasad, B.S.N.; Kumar, T.R.P.; Rajasimman, M.; Hosseini-Bandegharaei, A.; Prabu, D.; Crispin, S. A focus to green synthesis of metal/metal based oxide nanoparticles: Various mechanisms and applications towards ecological approach. J Clean Prod 2021, 324, 129198.

[5] Raghav, P.K.; Singh, V. Review on pharmacological properties of Caesalpinia bonduc L the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) License (http://creativecommons.org/licenses/by-nc-nd/3.0) Review on pharmacological properties of Caesalpinia bonduc L. Int. J. Med. Arom. Plants. , 2(3) . 2012.

[6] Ravichandran, B.; Devkunvar, S.; Bhatt, N.; Elumalai, S.; Banupriya, R.; Jayaseelan, K.; Saranya, R. STUDIES ON PHYTOCHEMICALS AND ANTI-INFLAMMATORY ACTIVITY OF CAESALPINIA BONDUCELLA (LINN) Research Article STUDIES ON PHYTOCHEMICALS AND ANTI-INFLAMMATORY ACTIVITY OF CAESALPINIA BONDUCELLA (LINN). J Pharma Res 2018, 7(5), 63–69.

[7] Subbiah, V.; Nagaraja, P.; Narayan, P.; Nagendra, H.G.R. Evaluation of pharmacological properties of Caesalpinia bonducella seed and shell extract. Pharmacognosy Journal 2019, 11(1), 150–154.

[8] Gadakh, M.J.; Jadhav, R.S.; Vikhe, D.N. Biological Potential of Caesalpinia bonducella Seeds: A Review. Journal of Drug Delivery and Therapeutics 2020, 10(3-s), 308–310.

[9] Rao, V.; Poonia, A. Bioactive compounds, nanoparticles synthesis, health benefits and potential utilization of edible flowers for the development of functional dairy products: a review. Journal of Food Science and Technology. , 61(6) , 1053–1068. 2024.

[10] Islam, F.; Shohag, S.; Uddin, M.J.; Islam, M.R.; Nafady, M.H.; Akter, A.; Mitra, S.; Roy, A.; Emran, T. Bin; Cavalu, S. Exploring the Journey of Zinc Oxide Nanoparticles (ZnO-NPs) toward Biomedical Applications. Materials. , 15(6) . 2022.

[11] Anitha, L.; Sai Bramari, G.; Kalpana, P. Effect of Supplementation of <i>Spirulina platensis</i> to Enhance the Zinc Status in Plants of <i>Amaranthus gangeticus, Phaseolus aureus</i> and Tomato. Advances in Bioscience and Biotechnology 2016, 07(06), 289–299.

[12] Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil. , 302(1–2) , 1–17. 2008.

[13] Sabir, S.; Arshad, M.; Chaudhari, S.K. Zinc oxide nanoparticles for revolutionizing agriculture: Synthesis and applications. Scientific World Journal. , 2014. 2014.

[14] Kumari, S.; Kumar, P. EXPLORING ECO-FRIENDLY APPROACHES: A COMPREHENSIVE REVIEW ON GREEN SYNTHESIS OF NANOPARTICLES. Certified Journal │ Pankaj et al. World Journal of Pharmaceutical Research 2024, 13, 1556.

[15] Begum, S.J.P.; Pratibha, S.; Rawat, J.M.; Venugopal, D.; Sahu, P.; Gowda, A.; Qureshi, K.A.; Jaremko, M. Recent Advances in Green Synthesis, Characterization, and Applications of Bioactive Metallic Nanoparticles. Pharmaceuticals. , 15(4) . 2022.

[16] Upadhyay, P.K.; Singh, V.K.; Rajanna, G.A.; Dwivedi, B.S.; Dey, A.; Singh, R.K.; Rathore, S.S.; Shekhawat, K.; Babu, S.; Singh, T.; Kumar, Y.; Singh, C.; Rangot, M.; Kumar, A.; Sarkar, S.; Dash, S.; Rawat, S. Unveiling the combined effect of nano fertilizers and conventional fertilizers on crop productivity, profitability, and soil well-being. Front Sustain Food Syst 2023, 7.

[17] Donia, D.T.; Carbone, M. Seed Priming with Zinc Oxide Nanoparticles to Enhance Crop Tolerance to Environmental Stresses. International Journal of Molecular Sciences. , 24(24) . 2023.

[18] Nile, S.H.; Thiruvengadam, M.; Wang, Y.; Samynathan, R.; Shariati, M.A.; Rebezov, M.; Nile, A.; Sun, M.; Venkidasamy, B.; Xiao, J.; Kai, G. Nano-priming as emerging seed priming technology for sustainable agriculture—recent developments and future perspectives. Journal of Nanobiotechnology. , 20(1) . 2022.

[19] Khan, M.N.; Fu, C.; Li, J.; Tao, Y.; Li, Y.; Hu, J.; Chen, L.; Khan, Z.; Wu, H.; Li, Z. Seed nanopriming: How do nanomaterials improve seed tolerance to salinity and drought? Chemosphere. , 310. 2023.

[20] J, N.; E, K.; S, R. “Green Synthesis of Zinc Oxide Nanoparticles: Eco-Friendly Advancements for Biomedical Marvels.” Resources Chemicals and Materials 2024.

[21] Shabaani, M.; Rahaiee, S.; Zare, M.; Jafari, S.M. Green synthesis of ZnO nanoparticles using loquat seed extract; Biological functions and photocatalytic degradation properties. LWT 2020, 134.

[22] Kumar, P.; Kumar, S.V. Nanopriming of Eleusine coracana seeds using phyto-assisted magnetic nanoparticles (Fe3O4) synthesized from Colocasia esculenta leaves. Biomass Convers Biorefin 2023.

[23] CLAus, C.; Sorgeloos, A. Proposal for a Short-Term Toxicity Test with Artemia Nauplii. ECOTOXICOLOCY AND ENVIRONMENTAL SAFETY. , 5. 1981.

[24] Sangian, H.; Faramarzi, H.; Yazdinezhad, A.; Mousavi, S.J.; Zamani, Z.; Noubarani, M.; Ramazani, A. Antiplasmodial activity of ethanolic extracts of some selected medicinal plants from the northwest of Iran. Parasitol Res 2013, 112(11), 3697–3701.

[25] Adloo, M.N.; Matinfar, A.; Sourinezhad, I. Effects of feeding enriched artemia fransiscana with HUFA, vitamin C and E on growth performance, survival and stress resistance of yellowfin seabream larvae. J Aquac Res Dev 2012, 3(8).

[26] Jayarambabu, N.; Ȧ Nj.; Siva Kumari Ȧ, B.; Venkateswara Rao Ḃ, K.; Prabhu Ḃ Ȧ, Y. Germination and Growth Characteristics of Mungbean Seeds (Vigna radiata L.) affected by Synthesized Zinc Oxide Nanoparticles. Research Article International Journal of Current Engineering and Technology. , 4(5) . 2014.

[27] Thomson’, A.J.; El-Kassaby2, Y.A. Interpretation of seed-germination parameters. New Forests. , 7. 1993.

[28] Sharma, D.; Afzal, S.; Singh, N.K. Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds. J Biotechnol 2021, 336, 64–75.

[29] Hasanaklou, N.T.; Mohagheghi, V.; Hasanaklou, H.T.; Ma’mani, L.; Malekmohammadi, M.; Moradi, F.; Dalvand, Y. Seed nano-priming using silica nanoparticles: effects in seed germination and physiological properties of Stevia Rebaudiana Bertoni. Chemical and Biological Technologies in Agriculture 2023, 10(1).

[30] Fetouh, M.; Hassan, F.; Fetouh, M.I.; Hassan, F.A. Seed germination criteria and seedling characteristics of Magnolia grandiflora L. trees after cold stratification treatments. Int.J.Curr.Microbiol.App.Sci. , 3(3) . 2014.

[31] Ghamsari, M.S.; Alamdari, S.; Han, W.; Park, H.H. Impact of nanostructured thin ZnO film in ultraviolet protection. Int J Nanomedicine 2017, 12, 207–216.

[32] Xiao, X.; Peng, B.; Cai, L.; Zhang, X.; Liu, S.; Wang, Y. The high efficient catalytic properties for thermal decomposition of ammonium perchlorate using mesoporous ZnCo2O4 rods synthesized by oxalate co-precipitation method. Sci Rep 2018, 8(1).

[33] Devi Ȧ, Rs.; Gayathri Ȧ Ȧ, R. Green Synthesis of Zinc Oxide Nanoparticles by using Hibiscus rosa-sinensis. Research Article International Journal of Current Engineering and Technology Accepted. , 4(4) . 2014.

[34] Gonz醠ez-Fern醤dez, J.; David Pinz髇-Moreno, D.; Alexander Neciosup-Puican, A.; Ver髇ica Carranza-Oropeza, M. Green Method, Optical and Structural Characterization of ZnO Nanoparticles Synthesized Using Leaves Extract of M. oleifera. J Renew Mater 2022, 10(3), 833–847.

[35] Taghavi Fardood, S.; Ramazani, A.; Moradi, S.; Azimzadeh Asiabi, P. Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light. Journal of Materials Science: Materials in Electronics 2017, 28(18), 13596–13601.

[36] Kabadayi, O.; Altintig, E.; Ballai, G. Zeolite supported zinc oxide nanoparticles composite: Synthesis, characterization, and photocatalytic activity for methylene blue dye degradation. Desalination Water Treat 2024, 319.

[37] Rakgotho, T.; Ndou, N.; Mulaudzi, T.; Iwuoha, E.; Mayedwa, N.; Ajayi, R.F. Green-Synthesized Zinc Oxide Nanoparticles Mitigate Salt Stress in Sorghum bicolor. Agriculture (Switzerland) 2022, 12(5).

[38] Raghav, P.K.; Singh, V. Review on pharmacological properties of Caesalpinia bonduc L the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) License (http://creativecommons.org/licenses/by-nc-nd/3.0) Review on pharmacological properties of Caesalpinia bonduc L. Int. J. Med. Arom. Plants. , 2(3) . 2012.

[39] Sankar Sana, S.; Vadde, R.; Kumar, R.; Kumar Arla, S.; Somala, R.; Rao Kummari, K.; Zhijun, Z.; Kumar Naidu Boya, V.; Mondal, K.; Mamidi, N. Eco-friendly and facile production of antibacterial Zinc oxide 1 nanoparticles from Grewia flavescens (G. flavescens) leaf extract 2 for Biomedical applications. 2023.

[40] Jan, H.; Shah, M.; Andleeb, A.; Faisal, S.; Khattak, A.; Rizwan, M.; Drouet, S.; Hano, C.; Abbasi, B.H. Plant-Based Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Aqueous Leaf Extract of Aquilegia pubiflora: Their Antiproliferative Activity against HepG2 Cells Inducing Reactive Oxygen Species and Other in Vitro Properties. Oxid Med Cell Longev 2021, 2021.

[41] Ahmad, H.; Venugopal, K.; Rajagopal, K.; Britto, S. De; Nandini, B.; Pushpalatha, H.G.; Konappa, N.; Udayashankar, A.C.; Geetha, N.; Jogaiah, S. Green synthesis and characterization of zinc oxide nanoparticles using eucalyptus globules and their fungicidal ability against pathogenic fungi of apple orchards. Biomolecules 2020, 10(3).

[42] Quevedo, A.C.; Guggenheim, E.; Briffa, S.M.; Adams, J.; Lofts, S.; Kwak, M.; Lee, T.G.; Johnston, C.; Wagner, S.; Holbrook, T.R.; Hachenberger, Y.U.; Tentschert, J.; Davidson, N.; Valsami-Jones, E. UV-vis spectroscopic characterization of nanomaterials in aqueous media. Journal of Visualized Experiments 2021, (176).

[43] Sharma, D.; Afzal, S.; Singh, N.K. Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds. J Biotechnol 2021, 336, 64–75.

[44] Rathnasamy, R.; Thangasamy, P.; Thangamuthu, R.; Sampath, S.; Alagan, V. Green synthesis of ZnO nanoparticles using Carica papaya leaf extracts for photocatalytic and photovoltaic applications. Journal of Materials Science: Materials in Electronics 2017, 28(14), 10374–10381.

[45] Gong, Y.; Chen, X.; Wu, W. Application of fourier transform infrared (FTIR) spectroscopy in sample preparation: Material characterization and mechanism investigation. Advances in Sample Preparation 2024, 11.

[46] Thirumal, S.; Senthilkumar, S.R.; Sivakumar, T. Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Article in International Journal of Pharmacy and Pharmaceutical Sciences. . 2014.

[47] Rajiv, P.; Rajeshwari, S.; Venckatesh, R. Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta A Mol Biomol Spectrosc 2013, 112, 384–387.

[48] Ahmed, S.; Saifullah; Ahmad, M.; Swami, B.L.; Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 2016, 9(1), 1–7.

[49] Raza, A.; Malan, P.; Ahmad, I.; Khan, A.; Haris, M.; Zahid, Z.; Jameel, M.; Ahmad, A.; Seth, C.S.; Asseri, T.A.Y.; Hashem, M.; Ahmad, F. Polyalthia longifolia-mediated green synthesis of zinc oxide nanoparticles: characterization, photocatalytic and antifungal activities. RSC Adv 2024, 14(25), 17535–17546.

[50] Sikora, A.; Bartczak, D.; Geißler, D.; Kestens, V.; Roebben, G.; Ramaye, Y.; Varga, Z.; Palmai, M.; Shard, A.G.; Goenaga-Infante, H.; Minelli, C. A systematic comparison of different techniques to determine the zeta potential of silica nanoparticles in biological medium. Analytical Methods 2015, 7(23), 9835–9843.

[51] Raut, S.; Thorat, P. V; Thakre, R. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Ocimum Tenuiflorum Leaves. International Journal of Science and Research. , 4. 2013.

[52] Abdelbaky, A.S.; Abd El-Mageed, T.A.; Babalghith, A.O.; Selim, S.; Mohamed, A.M.H.A. Green Synthesis and Characterization of ZnO Nanoparticles Using Pelargonium odoratissimum (L.) Aqueous Leaf Extract and Their Antioxidant, Antibacterial and Anti-inflammatory Activities. Antioxidants 2022, 11(8).

[53] Lyon, D.; Fortner, J.; Sayes, C.; Colvin, V.; Hughe, J. Bacterial Cell Association and Antimicrobial Activity of a C60 Water Suspension. Environmental toxicology and chemistry / SETAC 2005, 24, 2757–2762.

[54] Zhu, X.; Zhu, L.; Li, Y.; Duan, Z.; Chen, W.; Alvarez, P. Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: Buckminsterfullerene aggregates (nC60) and fullerol. Environmental toxicology and chemistry / SETAC 2007, 26, 976–979.

[55] Asghari, S.; Johari, S.A.; Lee, J.H.; Kim, Y.S.; Jeon, Y.B.; Choi, H.J.; Moon, M.C.; Yu, I.J. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnology 2012, 10.

[56] Johari, S.A.; Kalbassi, M.R.; Soltani, M.;; Yu, I.J. Toxicity comparison of colloidal silver nanoparticles in various life stages of rainbow trout (Oncorhynchus mykiss) Item Type Journal Contribution. .

[57] Rajabi, S.; Ramazani, A.; Hamidi, M.; Naji, T. Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU, Journal of Pharmaceutical Sciences 2015, 23(1).

[58] Khoshnood, R.; Farshchi, P. Acute toxicity of TiO2, CuO and ZnO nanoparticles in brine shrimp. Artemia franciscana Article in Iranian Journal of Fisheries Sciences. . 2017.

[59] Ates, M.; Daniels, J.; Arslan, Z.; Farah, I.O.; Rivera, H.F. Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: Effects of particle size and solubility on toxicity. Environmental Sciences: Processes and Impacts 2013, 15(1), 225–233.

[60] Ates, M.; Danabas, D.; Ertit Tastan, B.; Unal, I.; Cicek Cimen, I.C.; Aksu, O.; Kutlu, B.; Arslan, Z. Assessment of Oxidative Stress on Artemia salina and Daphnia magna After Exposure to Zn and ZnO Nanoparticles. Bull Environ Contam Toxicol 2020, 104(2), 206–214.

[61] Danabas, D.; Ates, M.; Ertit Tastan, B.; Cicek Cimen, I.C.; Unal, I.; Aksu, O.; Kutlu, B. Effects of Zn and ZnO Nanoparticles on Artemia salina and Daphnia magna Organisms: Toxicity, Accumulation and Elimination. Science of the Total Environment 2020, 711.

[62] Arora, P.K.; Tripathi, S.; Omar, R.A.; Chauhan, P.; Sinhal, V.K.; Singh, A.; Srivastava, A.; Garg, S.K.; Singh, V.P. Next-generation fertilizers: the impact of bionanofertilizers on sustainable agriculture. Microbial Cell Factories. , 23(1) . 2024.

[63] Raliya, R.; Tarafdar, J.C. ZnO Nanoparticle Biosynthesis and Its Effect on Phosphorous-Mobilizing Enzyme Secretion and Gum Contents in Clusterbean (Cyamopsis tetragonoloba L.). Agricultural Research 2013, 2(1), 48–57.

[64] Acharya, P.; Jayaprakasha, G.K.; Crosby, K.M.; Jifon, J.L.; Patil, B.S. Nanoparticle-Mediated Seed Priming Improves Germination, Growth, Yield, and Quality of Watermelons (Citrullus lanatus) at multi-locations in Texas. Sci Rep 2020, 10(1).

[65] Liu, L.; Xia, W.; Li, H.; Zeng, H.; Wei, B.; Han, S.; Yin, C. Salinity inhibits rice seed germination by reducing α-amylase activity via decreased bioactive gibberellin content. Front Plant Sci 2018, 9.

[66] Diaz-Mendoza, M.; Diaz, I.; Martinez, M. Insights on the proteases involved in barley and wheat grain germination. International Journal of Molecular Sciences. , 20(9) . 2019.

[67] Li, Y.; Liang, L.; Li, W.; Ashraf, U.; Ma, L.; Tang, X.; Pan, S.; Tian, H.; Mo, Z. ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. J Nanobiotechnology 2021, 19(1).

[68] Rani, P.; Kaur, G.; Rao, K.V.; Singh, J.; Rawat, M. Impact of Green Synthesized Metal Oxide Nanoparticles on Seed Germination and Seedling Growth of Vigna radiata (Mung Bean) and Cajanus cajan (Red Gram). J Inorg Organomet Polym Mater 2020, 30(10), 4053–4062.

[69] Hemalatha, M.; Hilli, J.S.; Chandrashekhar, S.S.; Vijayakumar, A.G.; Reddy, U.G.; Tippannavar, P.S. Application of green synthesized Ag and Cu nanoparticles for the control of bruchids and their impact on seed quality and yield in greengram. Heliyon 2024, 10(11).

[70] Acharya, P.; Jayaprakasha, G.K.; Crosby, K.M.; Jifon, J.L.; Patil, B.S. Green-Synthesized Nanoparticles Enhanced Seedling Growth, Yield, and Quality of Onion (Allium cepa L.). ACS Sustain Chem Eng 2019, 7(17), 14580–14590.

[71] Banerjee, S.; Islam, J.; Mondal, S.; Saha, A.; Saha, B.; Sen, A. Proactive attenuation of arsenic-stress by nano-priming: Zinc Oxide Nanoparticles in Vigna mungo (L.) Hepper trigger antioxidant defense response and reduce root-shoot arsenic translocation. J Hazard Mater 2023, 446.

[72] Salam, A.; Khan, A.R.; Liu, L.; Yang, S.; Azhar, W.; Ulhassan, Z.; Zeeshan, M.; Wu, J.; Fan, X.; Gan, Y. Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress. J Hazard Mater 2022, 423.

Downloads

Published

2025-01-31

How to Cite

Charles, D. A., Katturajan, R., Kumar, G., Velu, S., Nisar, N. T., & Prince, S. E. (2025). Green Synthesis of ZnO Nanoparticles from Caesalpinia bonducella Seed and Application in Nano-priming-Assisted Vigna mungo Seed Germination. International Journal of Scientific Research and Modern Technology, 4(1), 37–48. https://doi.org/10.5281/zenodo.14745500

Similar Articles

You may also start an advanced similarity search for this article.