Simulation Study of Modified Two-Parameter Liu Estimator (MTPLE) Method to Overcome Multicollinearity in The Poisson Regression Model
DOI:
https://doi.org/10.5281/zenodo.14916371Keywords:
Modified Two-Parameter Liu Estimator, Liu Estimator, Maximum Likelihood Estimator, Multicollinearity, Poisson Regression ModelAbstract
This study aims to evaluate the performance of the Modified Two-Parameter Liu Estimator method in dealing with multicollinearity and compare the performance of Maximum Likelihood Estimator, Liu Estimator, and Modified Two-Parameter Liu Estimator. Simulated data was used with n = 30, 50, 75, 150, and 300 in a Poisson regression model (p = 4, 6, 8) with ρ = 0.89, 0.95, and 0.99. The performance is evaluated using the mean square error criterion. The study results showed the superiority of Modified Two-Parameter Liu Estimator over the other estimators as it has the smallest mean square error value.
Downloads
References
[1].Kyriazos, T. & Poga, M. 2023. Dealing with Multicollinearity in Factor Analysis: The Problem, Detections, and Solutions. Journal of Statistics. 13(3): 404-424. https://doi.org/10.4236/ojs.2023.133020
[2].Abdelwahab, M., Abonazel, M., Hammad, A., & Masry, A. 2024. Modified Two-Parameter Liu Estimator for Addressing Multicollinearity in the Poisson Regression Model. Axioms. 13(46): 1-22. https://doi.org/10.3390/axioms13010046
[3].Al-Juboori, F. 2022. A new method of Poisson regression estimator in the presence of a Multicollinearity problem: Simulation and application. Journal of Engineering and Natural Sciences. 10(2): 164-188. https://www.elibrary.ru/item.asp?id=48433144
[4].Saputri, S. A., Herawati, N., Sutrisno, A., Nusyirwan, Nisa, K. 2024. Comparison Of MLE, LASSO, And Liu Estimator Methods to Overcome Multicollinearity in Multinomial Logistic Regression: Simulation Study. Global Scientific and Academic Research Journal of Multidisciplinary Studies. 3(5): 8-12. https://gsarpublishers.com/wp-content/uploads/2024/05/GSARJMS662024-Gelary-script.pdf
[5].Abonazel, M., Awwad, F., Eldin, E., Kibria, G., & Khattab, I. 2023. Developing A Two-Parameter Liu Estimator for The COM-Poisson Regression Model: Application and Simulation. Journal of Applied Mathematics and Statistics. 9: 1-16. https://doi.org/10.3389/fams.2023.956963
[6].Qasim. M., Kibria, B. M. G., Mansson, K., & Sjolander, P. 2020. A New Poisson Liu Regression Estimator: method and application. Journal of Applied Statistics. 47(12): 2258-2271. https://doi.org/10.1080/02664763.2019.1707485
[7].Alrweili, H. 2024. Kibria–Lukman Hybrid Estimator for Handling Multicollinearity in Poisson Regression Model: Method and Application. International Journal of Mathematics and Mathematical Sciences. 2024(1): 1-31. https://doi.org/10.1155/2024/1053397
[8].Amin, M., Akram, M. N., & Kibria, B. M. G. 2021. A New Adjusted Liu Estimator for The Poisson Regression Model. Wiley. 33(20): 1-12. https://doi.org/10.1002/cpe.6340
[9].Chan, J., Leow, S., Bea, K., Cheng, W., Phoong, S., Hong, Z., & Chen, Y. 2022. Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review. Journal of Mathematics. 10(8): 1-17. https://doi.org/10.3390/math10081283
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research and Modern Technology

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PlumX Metrics takes 2–4 working days to display the details. As the paper receives citations, PlumX Metrics will update accordingly.